import torch,os from torch.utils.data.dataset import Dataset from PIL import Image import scipy.io as sio import torchvision.transforms as transforms def data_list(img_root,mode): exist_aer_list = os.listdir(os.path.join(img_root , 'satview_correct')) exist_grd_list = os.listdir(os.path.join(img_root , 'streetview')) allDataList = os.path.join(img_root, 'ACT_data.mat') anuData = sio.loadmat(allDataList) all_data_list = [] for i in range(0, len(anuData['panoIds'])): grd_id_align = anuData['panoIds'][i] + '_grdView.png' sat_id_ori = anuData['panoIds'][i] + '_satView_polish.png' all_data_list.append([grd_id_align, sat_id_ori]) data_list = [] if mode=='train': training_inds = anuData['trainSet']['trainInd'][0][0] - 1 trainNum = len(training_inds) for k in range(trainNum): data_list.append(all_data_list[training_inds[k][0]]) else: val_inds = anuData['valSet']['valInd'][0][0] - 1 valNum = len(val_inds) for k in range(valNum): data_list.append(all_data_list[val_inds[k][0]]) pano_list = [img_root + 'streetview/' + item[0] for item in data_list if item[0] in exist_grd_list and item[1] in exist_aer_list] return pano_list def img_read(img,size=None,datatype='RGB'): img = Image.open(img).convert('RGB' if datatype=='RGB' else "L") if size: if type(size) is int: size = (size,size) img = img.resize(size = size,resample=Image.BICUBIC if datatype=='RGB' else Image.NEAREST) img = transforms.ToTensor()(img) return img class Dataset(Dataset): def __init__(self, opt,split='train',sub=None,sty_img=None): if sty_img: assert sty_img.endswith('grdView.png') demo_img_path = os.path.join(opt.data.root,'streetview',sty_img) self.pano_list = [demo_img_path] elif opt.task in ['test_vid','test_interpolation'] : demo_img_path = os.path.join(opt.data.root,'streetview',opt.demo_img.replace('satView_polish.png','grdView.png')) self.pano_list = [demo_img_path] else: self.pano_list = data_list(img_root=opt.data.root,mode=split) if sub: self.pano_list = self.pano_list[:sub] # select some ground images to test the influence of different skys. # different skys guide different illumination intensity, colors, and etc. if opt.task == 'test_sty': demo_name = [ 'dataset/CVACT/streetview/pPfo7qQ1fP_24rXrJ2Uxog_grdView.png', 'dataset/CVACT/streetview/YL81FiK9PucIvAkr1FHkpA_grdView.png', 'dataset/CVACT/streetview/Tzis1jBKHjbXiVB2oRYwAQ_grdView.png', 'dataset/CVACT/streetview/eqGgeBLGXRhSj6c-0h0KoQ_grdView.png', 'dataset/CVACT/streetview/pdZmLHYEhe2PHj_8-WHMhw_grdView.png', 'dataset/CVACT/streetview/ehsu9Q3iTin5t52DM-MwyQ_grdView.png', 'dataset/CVACT/streetview/agLEcuq3_-qFj7wwGbktVg_grdView.png', 'dataset/CVACT/streetview/HwQIDdMI3GfHyPGtCSo6aA_grdView.png', 'dataset/CVACT/streetview/hV8svb3ZVXcQ0AtTRFE1dQ_grdView.png', 'dataset/CVACT/streetview/fzq2mBfKP3UIczAd9KpMMg_grdView.png', 'dataset/CVACT/streetview/acRP98sACUIlwl2ZIsEyiQ_grdView.png', 'dataset/CVACT/streetview/WSh9tNVryLdupUlU0ri2tQ_grdView.png', 'dataset/CVACT/streetview/FhEuB9NA5o08VJ_TBCbHjw_grdView.png', 'dataset/CVACT/streetview/YHfpn2Mgu1lqgT2OUeBpOg_grdView.png', 'dataset/CVACT/streetview/vNhv7ZP1dUkJ93UwFXagJw_grdView.png', ] self.pano_list = demo_name self.opt = opt def __len__(self): return len(self.pano_list) def __getitem__(self, index): pano = self.pano_list[index] aer = pano.replace('streetview','satview_correct').replace('_grdView','_satView_polish') if self.opt.data.sky_mask: sky = pano.replace('streetview','pano_sky_mask') name = pano aer = img_read(aer, size = self.opt.data.sat_size) pano = img_read(pano,size = self.opt.data.pano_size) if self.opt.data.sky_mask: sky = img_read(sky,size=self.opt.data.pano_size,datatype='L') input = {} input['sat']=aer input['pano']=pano input['paths']=name if self.opt.data.sky_mask: input['sky_mask']=sky black_ground = torch.zeros_like(pano) if self.opt.data.histo_mode =='grey': input['sky_histc'] = (pano*sky+black_ground*(1-sky)).histc()[10:] elif self.opt.data.histo_mode in ['rgb','RGB']: input_a = (pano*sky+black_ground*(1-sky)) for idx in range(len(input_a)): if idx == 0: sky_histc = input_a[idx].histc()[10:] else: sky_histc = torch.cat([input_a[idx].histc()[10:],sky_histc],dim=0) input['sky_histc'] = sky_histc return input