Spaces:
Runtime error
Runtime error
File size: 25,289 Bytes
f670afc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
# Copyright (C) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
#
# This work is made available under the Nvidia Source Code License-NC.
# To view a copy of this license, check out LICENSE.md
# flake8: noqa: E712
"""Utils for handling datasets."""
import time
import numpy as np
from PIL import Image
# https://github.com/albumentations-team/albumentations#comments
import cv2
# from imaginaire.utils.distributed import master_only_print as print
import albumentations as alb # noqa nopep8
cv2.setNumThreads(0)
cv2.ocl.setUseOpenCL(False)
IMG_EXTENSIONS = ('jpg', 'jpeg', 'png', 'ppm', 'bmp',
'pgm', 'tif', 'tiff', 'webp',
'JPG', 'JPEG', 'PNG', 'PPM', 'BMP',
'PGM', 'TIF', 'TIFF', 'WEBP')
HDR_IMG_EXTENSIONS = ('hdr',)
VIDEO_EXTENSIONS = 'mp4'
class Augmentor(object):
r"""Handles data augmentation using albumentations library."""
def __init__(self, aug_list, individual_video_frame_aug_list, image_data_types, is_mask,
keypoint_data_types, interpolator):
r"""Initializes augmentation pipeline.
Args:
aug_list (list): List of augmentation operations in sequence.
individual_video_frame_aug_list (list): List of augmentation operations in sequence that will be applied
to individual frames of videos independently.
image_data_types (list): List of keys in expected inputs.
is_mask (dict): Whether this data type is discrete masks?
keypoint_data_types (list): List of keys which are keypoints.
"""
self.aug_list = aug_list
self.individual_video_frame_aug_list = individual_video_frame_aug_list
self.image_data_types = image_data_types
self.is_mask = is_mask
self.crop_h, self.crop_w = None, None
self.resize_h, self.resize_w = None, None
self.resize_smallest_side = None
self.max_time_step = 1
self.keypoint_data_types = keypoint_data_types
self.interpolator = interpolator
self.augment_ops = self._build_augmentation_ops()
self.individual_video_frame_augmentation_ops = self._build_individual_video_frame_augmentation_ops()
# Both crop and resize can't be none at the same time.
if self.crop_h is None and self.resize_smallest_side is None and \
self.resize_h is None:
raise ValueError('resize_smallest_side, resize_h_w, '
'and crop_h_w cannot all be missing.')
# If resize_smallest_side is given, resize_h_w should not be give.
if self.resize_smallest_side is not None:
assert self.resize_h is None, \
'Cannot have both `resize_smallest_side` and `resize_h_w` set.'
if self.resize_smallest_side is None and self.resize_h is None:
self.resize_h, self.resize_w = self.crop_h, self.crop_w
def _build_individual_video_frame_augmentation_ops(self):
r"""Builds sequence of augmentation ops that will be applied to each frame in the video independently.
Returns:
(list of alb.ops): List of augmentation ops.
"""
augs = []
for key, value in self.individual_video_frame_aug_list.items():
if key == 'random_scale_limit':
if type(value) == float:
scale_limit_lb = scale_limit_ub = value
p = 1
else:
scale_limit_lb = value['scale_limit_lb']
scale_limit_ub = value['scale_limit_ub']
p = value['p']
augs.append(alb.RandomScale(scale_limit=(-scale_limit_lb, scale_limit_ub), p=p))
elif key == 'random_crop_h_w':
h, w = value.split(',')
h, w = int(h), int(w)
self.crop_h, self.crop_w = h, w
augs.append(alb.PadIfNeeded(min_height=h, min_width=w))
augs.append(alb.RandomCrop(h, w, always_apply=True, p=1))
return augs
def _build_augmentation_ops(self):
r"""Builds sequence of augmentation ops.
Returns:
(list of alb.ops): List of augmentation ops.
"""
augs = []
for key, value in self.aug_list.items():
if key == 'resize_smallest_side':
if isinstance(value, int):
self.resize_smallest_side = value
else:
h, w = value.split(',')
h, w = int(h), int(w)
self.resize_smallest_side = (h, w)
elif key == 'resize_h_w':
h, w = value.split(',')
h, w = int(h), int(w)
self.resize_h, self.resize_w = h, w
elif key == 'random_resize_h_w_aspect':
aspect_start, aspect_end = value.find('('), value.find(')')
aspect = value[aspect_start+1:aspect_end]
aspect_min, aspect_max = aspect.split(',')
h, w = value[:aspect_start].split(',')[:2]
h, w = int(h), int(w)
aspect_min, aspect_max = float(aspect_min), float(aspect_max)
augs.append(alb.RandomResizedCrop(
h, w, scale=(1, 1),
ratio=(aspect_min, aspect_max), always_apply=True, p=1))
self.resize_h, self.resize_w = h, w
elif key == 'rotate':
augs.append(alb.Rotate(
limit=value, always_apply=True, p=1))
elif key == 'random_rotate_90':
augs.append(alb.RandomRotate90(always_apply=False, p=0.5))
elif key == 'random_scale_limit':
augs.append(alb.RandomScale(scale_limit=(0, value), p=1))
elif key == 'random_crop_h_w':
h, w = value.split(',')
h, w = int(h), int(w)
self.crop_h, self.crop_w = h, w
augs.append(alb.RandomCrop(h, w, always_apply=True, p=1))
elif key == 'center_crop_h_w':
h, w = value.split(',')
h, w = int(h), int(w)
self.crop_h, self.crop_w = h, w
augs.append(alb.CenterCrop(h, w, always_apply=True, p=1))
elif key == 'horizontal_flip':
# This is handled separately as we need to keep track if this
# was applied in order to correctly modify keypoint data.
if value:
augs.append(alb.HorizontalFlip(always_apply=False, p=0.5))
# The options below including contrast, blur, motion_blur, compression, gamma
# were used during developing face-vid2vid.
elif key == 'contrast':
brightness_limit = value['brightness_limit']
contrast_limit = value['contrast_limit']
p = value['p']
augs.append(alb.RandomBrightnessContrast(
brightness_limit=brightness_limit, contrast_limit=contrast_limit, p=p))
elif key == 'blur':
blur_limit = value['blur_limit']
p = value['p']
augs.append(alb.Blur(blur_limit=blur_limit, p=p))
elif key == 'motion_blur':
blur_limit = value['blur_limit']
p = value['p']
augs.append(alb.MotionBlur(blur_limit=blur_limit, p=p))
elif key == 'compression':
quality_lower = value['quality_lower']
p = value['p']
augs.append(alb.ImageCompression(quality_lower=quality_lower, p=p))
elif key == 'gamma':
gamma_limit_lb = value['gamma_limit_lb']
gamma_limit_ub = value['gamma_limit_ub']
p = value['p']
augs.append(alb.RandomGamma(gamma_limit=(gamma_limit_lb, gamma_limit_ub), p=p))
elif key == 'max_time_step':
self.max_time_step = value
assert self.max_time_step >= 1, \
'max_time_step has to be at least 1'
else:
raise ValueError('Unknown augmentation %s' % (key))
return augs
def _choose_image_key(self, inputs):
r"""Choose key to replace with 'image' for input to albumentations.
Returns:
key (str): Chosen key to be replace with 'image'
"""
if 'image' in inputs:
return 'image'
for data_type in inputs:
if data_type in self.image_data_types:
return data_type
def _choose_keypoint_key(self, inputs):
r"""Choose key to replace with 'keypoints' for input to albumentations.
Returns:
key (str): Chosen key to be replace with 'keypoints'
"""
if not self.keypoint_data_types:
return None
if 'keypoints' in inputs:
return 'keypoints'
for data_type in inputs:
if data_type in self.keypoint_data_types:
return data_type
def _create_augmentation_targets(self, inputs):
r"""Create additional targets as required by the albumentation library.
Args:
inputs (dict): Keys are from self.augmentable_data_types. Values can
be numpy.ndarray or list of numpy.ndarray
(image or list of images).
Returns:
(dict):
- targets (dict): Dict containing mapping of keys to image/mask types.
- new_inputs (dict): Dict containing mapping of keys to data.
"""
# Get additional target list.
targets, new_inputs = {}, {}
for data_type in inputs:
if data_type in self.keypoint_data_types:
# Keypoint-type.
target_type = 'keypoints'
elif data_type in self.image_data_types:
# Image-type.
# Find the target type (image/mask) based on interpolation
# method.
if self.is_mask[data_type]:
target_type = 'mask'
else:
target_type = 'image'
else:
raise ValueError(
'Data type: %s is not image or keypoint' % (data_type))
current_data_type_inputs = inputs[data_type]
if not isinstance(current_data_type_inputs, list):
current_data_type_inputs = [current_data_type_inputs]
# Create additional_targets and inputs when there are multiples.
for idx, new_input in enumerate(current_data_type_inputs):
key = data_type
if idx > 0:
key = '%s::%05d' % (key, idx)
targets[key] = target_type
new_inputs[key] = new_input
return targets, new_inputs
def _collate_augmented(self, augmented):
r"""Collate separated images back into sequence, grouped by keys.
Args:
augmented (dict): Dict containing frames with keys of the form
'key', 'key::00001', 'key::00002', ..., 'key::N'.
Returns:
(dict):
- outputs (dict): Dict with list of collated inputs, i.e. frames of
- same key are arranged in order ['key', 'key::00001', ..., 'key::N'].
"""
full_keys = sorted(augmented.keys())
outputs = {}
for full_key in full_keys:
if '::' not in full_key:
# First occurrence of this key.
key = full_key
outputs[key] = []
else:
key = full_key.split('::')[0]
outputs[key].append(augmented[full_key])
return outputs
def _get_resize_h_w(self, height, width):
r"""Get height and width to resize to, given smallest side.
Args:
height (int): Input image height.
width (int): Input image width.
Returns:
(dict):
- height (int): Height to resize image to.
- width (int): Width to resize image to.
"""
if self.resize_smallest_side is None:
return self.resize_h, self.resize_w
if isinstance(self.resize_smallest_side, int):
resize_smallest_height, resize_smallest_width = self.resize_smallest_side, self.resize_smallest_side
else:
resize_smallest_height, resize_smallest_width = self.resize_smallest_side
if height * resize_smallest_width <= width * resize_smallest_height:
new_height = resize_smallest_height
new_width = int(np.round(new_height * width / float(height)))
else:
new_width = resize_smallest_width
new_height = int(np.round(new_width * height / float(width)))
return new_height, new_width
def _perform_unpaired_augmentation(self, inputs, augment_ops):
r"""Perform different data augmentation on different image inputs. Note that this operation only works
Args:
inputs (dict): Keys are from self.image_data_types. Values are list
of numpy.ndarray (list of images).
augment_ops (list): The augmentation operations.
Returns:
(dict):
- augmented (dict): Augmented inputs, with same keys as inputs.
- is_flipped (dict): Flag which tells if images have been LR flipped.
"""
# Process each data type separately as this is unpaired augmentation.
is_flipped = {}
for data_type in inputs:
assert data_type in self.image_data_types
augmented, flipped_flag = self._perform_paired_augmentation(
{data_type: inputs[data_type]}, augment_ops)
inputs[data_type] = augmented[data_type]
is_flipped[data_type] = flipped_flag
return inputs, is_flipped
def _perform_paired_augmentation(self, inputs, augment_ops):
r"""Perform same data augmentation on all inputs.
Args:
inputs (dict): Keys are from self.augmentable_data_types. Values are
list of numpy.ndarray (list of images).
augment_ops (list): The augmentation operations.
Returns:
(dict):
- augmented (dict): Augmented inputs, with same keys as inputs.
- is_flipped (bool): Flag which tells if images have been LR flipped.
"""
# Different data types may have different sizes and we use the largest one as the original size.
# Convert PIL images to numpy array.
self.original_h, self.original_w = 0, 0
for data_type in inputs:
if data_type in self.keypoint_data_types or \
data_type not in self.image_data_types:
continue
for idx in range(len(inputs[data_type])):
value = inputs[data_type][idx]
# Get resize h, w.
w, h = get_image_size(value)
self.original_h, self.original_w = max(self.original_h, h), max(self.original_w, w)
# self.original_h, self.original_w = h, w
# self.resize_h, self.resize_w = self._get_resize_h_w(h, w)
# Convert to numpy array with 3 dims (H, W, C).
value = np.array(value)
if value.ndim == 2:
value = value[..., np.newaxis]
inputs[data_type][idx] = value
self.resize_h, self.resize_w = self._get_resize_h_w(self.original_h, self.original_w)
# Add resize op to augmentation ops.
aug_ops_with_resize = [alb.Resize(
self.resize_h, self.resize_w, interpolation=getattr(cv2, self.interpolator), always_apply=1, p=1
)] + augment_ops
# Create targets.
targets, new_inputs = self._create_augmentation_targets(inputs)
extra_params = {}
# Albumentation requires a key called 'image' and
# a key called 'keypoints', if any keypoints are being passed in.
# Arbitrarily choose one key of image type to be 'image'.
chosen_image_key = self._choose_image_key(inputs)
new_inputs['image'] = new_inputs.pop(chosen_image_key)
targets['image'] = targets.pop(chosen_image_key)
# Arbitrarily choose one key of keypoint type to be 'keypoints'.
chosen_keypoint_key = self._choose_keypoint_key(inputs)
if chosen_keypoint_key is not None:
new_inputs['keypoints'] = new_inputs.pop(chosen_keypoint_key)
targets['keypoints'] = targets.pop(chosen_keypoint_key)
extra_params['keypoint_params'] = alb.KeypointParams(
format='xy', remove_invisible=False)
# Do augmentation.
augmented = alb.ReplayCompose(
aug_ops_with_resize, additional_targets=targets,
**extra_params)(**new_inputs)
augmentation_params = augmented.pop('replay')
# Check if flipping has occurred.
is_flipped = False
for augmentation_param in augmentation_params['transforms']:
if 'HorizontalFlip' in augmentation_param['__class_fullname__']:
is_flipped = augmentation_param['applied']
self.is_flipped = is_flipped
# Replace the key 'image' with chosen_image_key, same for 'keypoints'.
augmented[chosen_image_key] = augmented.pop('image')
if chosen_keypoint_key is not None:
augmented[chosen_keypoint_key] = augmented.pop('keypoints')
# Pack images back into a sequence.
augmented = self._collate_augmented(augmented)
# Convert keypoint types to np.array from list.
for data_type in self.keypoint_data_types:
augmented[data_type] = np.array(augmented[data_type])
return augmented, is_flipped
def perform_augmentation(self, inputs, paired, augment_ops):
r"""Entry point for augmentation.
Args:
inputs (dict): Keys are from self.augmentable_data_types. Values are
list of numpy.ndarray (list of images).
paired (bool): Apply same augmentation to all input keys?
augment_ops (list): The augmentation operations.
"""
# Make sure that all inputs are of same size, else trouble will
# ensue. This is because different images might have different
# aspect ratios.
# Check within data type.
for data_type in inputs:
if data_type in self.keypoint_data_types or \
data_type not in self.image_data_types:
continue
for idx in range(len(inputs[data_type])):
if idx == 0:
w, h = get_image_size(inputs[data_type][idx])
else:
this_w, this_h = get_image_size(inputs[data_type][idx])
# assert this_w == w and this_h == h
# assert this_w / (1.0 * this_h) == w / (1.0 * h)
# Check across data types.
if paired and self.resize_smallest_side is not None:
for idx, data_type in enumerate(inputs):
if data_type in self.keypoint_data_types or \
data_type not in self.image_data_types:
continue
if paired:
return self._perform_paired_augmentation(inputs, augment_ops)
else:
return self._perform_unpaired_augmentation(inputs, augment_ops)
def load_from_lmdb(keys, lmdbs):
r"""Load keys from lmdb handles.
Args:
keys (dict): This has data_type as key, and a list of paths into LMDB as
values.
lmdbs (dict): This has data_type as key, and LMDB handle as value.
Returns:
data (dict): This has data_type as key, and a list of decoded items from
LMDBs as value.
"""
data = {}
for data_type in keys:
if data_type not in data:
data[data_type] = []
data_type_keys = keys[data_type]
if not isinstance(data_type_keys, list):
data_type_keys = [data_type_keys]
for key in data_type_keys:
data[data_type].append(lmdbs[data_type].getitem_by_path(
key.encode(), data_type))
return data
def load_from_folder(keys, handles):
r"""Load keys from lmdb handles.
Args:
keys (dict): This has data_type as key, and a list of paths as
values.
handles (dict): This has data_type as key, and Folder handle as value.
Returns:
data (dict): This has data_type as key, and a list of decoded items from
folders as value.
"""
data = {}
for data_type in keys:
if data_type not in data:
data[data_type] = []
data_type_keys = keys[data_type]
if not isinstance(data_type_keys, list):
data_type_keys = [data_type_keys]
for key in data_type_keys:
data[data_type].append(handles[data_type].getitem_by_path(
key.encode(), data_type))
return data
def load_from_object_store(keys, handles):
r"""Load keys from AWS S3 handles.
Args:
keys (dict): This has data_type as key, and a list of paths as
values.
handles (dict): This has data_type as key, and Folder handle as value.
Returns:
data (dict): This has data_type as key, and a list of decoded items from
folders as value.
"""
data = {}
for data_type in keys:
if data_type not in data:
data[data_type] = []
data_type_keys = keys[data_type]
if not isinstance(data_type_keys, list):
data_type_keys = [data_type_keys]
for key in data_type_keys:
while True:
try:
data[data_type].append(handles[data_type].getitem_by_path(key, data_type))
except Exception as e:
print(e)
print(key, data_type)
print('Retrying in 30 seconds')
time.sleep(30)
continue
break
return data
def get_paired_input_image_channel_number(data_cfg):
r"""Get number of channels for the input image.
Args:
data_cfg (obj): Data configuration structure.
Returns:
num_channels (int): Number of input image channels.
"""
num_channels = 0
for ix, data_type in enumerate(data_cfg.input_types):
for k in data_type:
if k in data_cfg.input_image:
num_channels += data_type[k].num_channels
print('Concatenate %s for input.' % data_type)
print('\tNum. of channels in the input image: %d' % num_channels)
return num_channels
def get_paired_input_label_channel_number(data_cfg, video=False):
r"""Get number of channels for the input label map.
Args:
data_cfg (obj): Data configuration structure.
video (bool): Whether we are dealing with video data.
Returns:
num_channels (int): Number of input label map channels.
"""
num_labels = 0
if not hasattr(data_cfg, 'input_labels'):
return num_labels
for ix, data_type in enumerate(data_cfg.input_types):
for k in data_type:
if k in data_cfg.input_labels:
if hasattr(data_cfg, 'one_hot_num_classes') and k in data_cfg.one_hot_num_classes:
num_labels += data_cfg.one_hot_num_classes[k]
if getattr(data_cfg, 'use_dont_care', False):
num_labels += 1
else:
num_labels += data_type[k].num_channels
print('Concatenate %s for input.' % data_type)
if video:
num_time_steps = getattr(data_cfg.train, 'initial_sequence_length',
None)
num_labels *= num_time_steps
num_labels += get_paired_input_image_channel_number(data_cfg) * (
num_time_steps - 1)
print('\tNum. of channels in the input label: %d' % num_labels)
return num_labels
def get_class_number(data_cfg):
r"""Get number of classes for class-conditional GAN model
Args:
data_cfg (obj): Data configuration structure.
Returns:
(int): Number of classes.
"""
return data_cfg.num_classes
def get_crop_h_w(augmentation):
r"""Get height and width of crop.
Args:
augmentation (dict): Dict of applied augmentations.
Returns:
(dict):
- crop_h (int): Height of the image crop.
- crop_w (int): Width of the image crop.
"""
print(augmentation.__dict__.keys())
for k in augmentation.__dict__.keys():
if 'crop_h_w' in k:
filed = augmentation[k]
crop_h, crop_w = filed.split(',')
crop_h = int(crop_h)
crop_w = int(crop_w)
# assert crop_w == crop_h, 'This implementation only ' \
# 'supports square-shaped images.'
print('\tCrop size: (%d, %d)' % (crop_h, crop_w))
return crop_h, crop_w
raise AttributeError
def get_image_size(x):
try:
w, h = x.size
except Exception:
h, w, _ = x.shape
return w, h
|