import requests import pandas as pd import io from fpdf import FPDF import json def convert_xlsx_to_pdf(file): """Converts an XLSX file to a PDF and returns a BytesIO object with a filename.""" excel_data = pd.ExcelFile(file) pdf = FPDF() pdf.set_auto_page_break(auto=True, margin=15) pdf.add_page() pdf.set_font("Arial", size=12) for sheet_name in excel_data.sheet_names: pdf.cell(200, 10, txt=f"Sheet: {sheet_name}", ln=True, align='C') pdf.ln(10) df = excel_data.parse(sheet_name) for i in range(min(10, len(df))): # Limiting rows for readability row_data = " | ".join(str(x) for x in df.iloc[i]) pdf.multi_cell(0, 10, row_data) pdf.ln(5) pdf_output = io.BytesIO() pdf_output.write(pdf.output(dest='S').encode('latin1')) # Convert to bytes pdf_output.seek(0) # Manually add a 'name' attribute to mimic a file pdf_output.name = file.name.replace(".xlsx", ".pdf") return pdf_output def upload_file_to_vectara(file, customer_id, api_key, corpus_key): """Uploads a file to Vectara API v2.""" url = f"https://api.vectara.io/v2/corpora/{corpus_key}/upload_file" headers = { "customer-id": customer_id, "x-api-key": api_key, "Accept": "application/json" } metadata = {"type_file": "excel"} if file.name.endswith('.xlsx') else {} if file.name.endswith('.xlsx'): file = convert_xlsx_to_pdf(file) # Convert XLSX to PDF files = { 'metadata': (None, json.dumps(metadata), 'application/json'), "file": (file.name, file.getvalue())} # Now file.name exists response = requests.post(url, headers=headers, files=files) return response.json()