import gradio as gr import numpy as np import random from diffusers import DiffusionPipeline import torch from huggingface_hub import InferenceClient from PIL import Image from io import BytesIO # Initialize the Hugging Face client for chat client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") # Initialize the DiffusionPipeline for image generation device = "cuda" if torch.cuda.is_available() else "cpu" if torch.cuda.is_available(): torch.cuda.max_memory_allocated(device=device) pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True) pipe.enable_xformers_memory_efficient_attention() pipe = pipe.to(device) else: pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True) pipe = pipe.to(device) MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 1024 def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps): if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator().manual_seed(seed) image = pipe( prompt = prompt, negative_prompt = negative_prompt, guidance_scale = guidance_scale, num_inference_steps = num_inference_steps, width = width, height = height, generator = generator ).images[0] return image def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): # Check for image generation request if "generate an image" in message.lower(): prompt = message.replace("generate an image", "").strip() image = infer( prompt=prompt, negative_prompt="", seed=0, randomize_seed=True, width=512, height=512, guidance_scale=7.5, num_inference_steps=50 ) buffered = BytesIO() image.save(buffered, format="PNG") img_str = buffered.getvalue() return "Here is your generated image:", img_str messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response # Define Gradio Blocks interface with gr.Blocks() as demo: gr.Markdown("# Chat and Image Generation") with gr.Row(): with gr.Column(): chat_interface = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) def process_image_request(prompt): image = infer( prompt=prompt, negative_prompt="", seed=0, randomize_seed=True, width=512, height=512, guidance_scale=7.5, num_inference_steps=50 ) buffered = BytesIO() image.save(buffered, format="PNG") return buffered.getvalue() gr.Examples( examples=["Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice"], inputs=[gr.Textbox(label="Prompt", placeholder="Enter your prompt")], outputs=[gr.Image()] ) demo.queue().launch()