import sys import os import onnx from onnx_tf.backend import prepare def onnx_to_torch_converter(dir_name): if not os.path.exists(dir_name): print(f"Directory {dir_name} does not exist!") return onnx_model_path = os.path.join(dir_name, "onnx", "model.onnx") if not os.path.exists(onnx_model_path): print(f"ONNX model at {onnx_model_path} does not exist!") return onnx_model = onnx.load(onnx_model_path) tf_rep = prepare(onnx_model) # prepare tf representation tf_model_save_path = os.path.join(dir_name, "tf_model") tf_rep.export_graph(tf_model_save_path) # export the model print(f"PyTorch model saved at {tf_model_save_path}") if __name__ == "__main__": if len(sys.argv) != 2: print("Usage: python onnx2torch.py [directory_path]") else: dir_name = sys.argv[1] onnx_to_torch_converter(dir_name)