import os import streamlit as st from tempfile import NamedTemporaryFile from langchain.chains import create_retrieval_chain from langchain.chains.combine_documents import create_stuff_documents_chain from langchain_core.prompts import ChatPromptTemplate from langchain_openai import ChatOpenAI from langchain_community.document_loaders import PyPDFLoader from langchain_community.document_loaders import TextLoader from langchain_community.vectorstores import FAISS from langchain_openai import OpenAIEmbeddings from langchain_text_splitters import RecursiveCharacterTextSplitter import re import anthropic # Function to remove code block markers from the answer def remove_code_blocks(text): code_block_pattern = r"^```(?:\w+)?\n(.*?)\n```$" match = re.match(code_block_pattern, text, re.DOTALL) if match: return match.group(1).strip() else: return text # Function to process PDF, run Q&A, and return results def process_pdf(api_key, uploaded_file, questions_path, prompt_path, display_placeholder): os.environ["OPENAI_API_KEY"] = api_key with NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf: temp_pdf.write(uploaded_file.read()) temp_pdf_path = temp_pdf.name loader = PyPDFLoader(temp_pdf_path) docs = loader.load() text_splitter = RecursiveCharacterTextSplitter(chunk_size=3000, chunk_overlap=500) splits = text_splitter.split_documents(docs) vectorstore = FAISS.from_documents( documents=splits, embedding=OpenAIEmbeddings(model="text-embedding-3-large") ) retriever = vectorstore.as_retriever(search_kwargs={"k": 10}) if os.path.exists(prompt_path): with open(prompt_path, "r") as file: system_prompt = file.read() else: raise FileNotFoundError(f"The specified file was not found: {prompt_path}") prompt = ChatPromptTemplate.from_messages( [ ("system", system_prompt), ("human", "{input}"), ] ) llm = ChatOpenAI(model="gpt-4o") question_answer_chain = create_stuff_documents_chain(llm, prompt, document_variable_name="context") rag_chain = create_retrieval_chain(retriever, question_answer_chain) if os.path.exists(questions_path): with open(questions_path, "r") as file: questions = [line.strip() for line in file.readlines() if line.strip()] else: raise FileNotFoundError(f"The specified file was not found: {questions_path}") qa_results = [] for question in questions: result = rag_chain.invoke({"input": question}) answer = result["answer"] answer = remove_code_blocks(answer) qa_text = f"### Question: {question}\n**Answer:**\n{answer}\n" qa_results.append(qa_text) display_placeholder.markdown("\n".join(qa_results), unsafe_allow_html=True) os.remove(temp_pdf_path) return qa_results # New function to process multi-plan QA using an existing vector store def process_multi_plan_qa(api_key, input_text, display_placeholder): os.environ["OPENAI_API_KEY"] = api_key # Load the existing vector store embeddings = OpenAIEmbeddings(model="text-embedding-3-large") vector_store = FAISS.load_local("Combined_Summary_Vectorstore", embeddings, allow_dangerous_deserialization=True) # Convert the vector store to a retriever retriever = vector_store.as_retriever(search_kwargs={"k": 50}) # Read the system prompt for multi-document QA prompt_path = "Prompts/multi_document_qa_system_prompt.md" if os.path.exists(prompt_path): with open(prompt_path, "r") as file: system_prompt = file.read() else: raise FileNotFoundError(f"The specified file was not found: {prompt_path}") # Create the prompt template prompt = ChatPromptTemplate.from_messages( [ ("system", system_prompt), ("human", "{input}"), ] ) # Create the question-answering chain llm = ChatOpenAI(model="gpt-4o") question_answer_chain = create_stuff_documents_chain(llm, prompt, document_variable_name="context") rag_chain = create_retrieval_chain(retriever, question_answer_chain) # Process the input text result = rag_chain.invoke({"input": input_text}) answer = result["answer"] # Display the answer display_placeholder.markdown(f"**Answer:**\n{answer}") def multi_plan_qa_multi_vectorstore(api_key, input_text, display_placeholder): os.environ["OPENAI_API_KEY"] = api_key # Directory containing individual vector stores vectorstore_directory = "Individual_Summary_Vectorstores" # List all vector store directories vectorstore_names = [d for d in os.listdir(vectorstore_directory) if os.path.isdir(os.path.join(vectorstore_directory, d))] # Initialize a list to collect all retrieved chunks all_retrieved_chunks = [] # Process each vector store for vectorstore_name in vectorstore_names: vectorstore_path = os.path.join(vectorstore_directory, vectorstore_name) # Load the vector store embeddings = OpenAIEmbeddings(model="text-embedding-3-large") vector_store = FAISS.load_local(vectorstore_path, embeddings, allow_dangerous_deserialization=True) # Convert the vector store to a retriever retriever = vector_store.as_retriever(search_kwargs={"k": 2}) # Retrieve relevant chunks for the input text retrieved_chunks = retriever.invoke("input_text") all_retrieved_chunks.extend(retrieved_chunks) # Read the system prompt for multi-document QA prompt_path = "Prompts/multi_document_qa_system_prompt.md" if os.path.exists(prompt_path): with open(prompt_path, "r") as file: system_prompt = file.read() else: raise FileNotFoundError(f"The specified file was not found: {prompt_path}") # Create the prompt template prompt = ChatPromptTemplate.from_messages( [ ("system", system_prompt), ("human", "{input}"), ] ) # Create the question-answering chain llm = ChatOpenAI(model="gpt-4o") question_answer_chain = create_stuff_documents_chain(llm, prompt, document_variable_name="context") # Process the combined context result = question_answer_chain.invoke({"input": input_text, "context": all_retrieved_chunks}) # Display the answer display_placeholder.markdown(f"**Answer:**\n{result}") # Function to compare document via one-to-many query approach def process_one_to_many_query(api_key, focus_input, comparison_inputs, input_text, display_placeholder): os.environ["OPENAI_API_KEY"] = api_key def load_documents_from_pdf(file): with NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf: temp_pdf.write(file.read()) temp_pdf_path = temp_pdf.name loader = PyPDFLoader(temp_pdf_path) docs = loader.load() os.remove(temp_pdf_path) return docs def load_vector_store_from_path(path): embeddings = OpenAIEmbeddings(model="text-embedding-3-large") return FAISS.load_local(path, embeddings, allow_dangerous_deserialization=True) # Load focus documents or vector store if isinstance(focus_input, st.runtime.uploaded_file_manager.UploadedFile): focus_docs = load_documents_from_pdf(focus_input) text_splitter = RecursiveCharacterTextSplitter(chunk_size=3000, chunk_overlap=500) focus_splits = text_splitter.split_documents(focus_docs) focus_vector_store = FAISS.from_documents(focus_splits, OpenAIEmbeddings(model="text-embedding-3-large")) focus_retriever = focus_vector_store.as_retriever(search_kwargs={"k": 5}) elif isinstance(focus_input, str) and os.path.isdir(focus_input): focus_vector_store = load_vector_store_from_path(focus_input) focus_retriever = focus_vector_store.as_retriever(search_kwargs={"k": 5}) else: raise ValueError("Invalid focus input type. Must be a PDF file or a path to a vector store.") focus_docs = focus_retriever.invoke(input_text) comparison_chunks = [] for comparison_input in comparison_inputs: if isinstance(comparison_input, st.runtime.uploaded_file_manager.UploadedFile): comparison_docs = load_documents_from_pdf(comparison_input) text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=500) comparison_splits = text_splitter.split_documents(comparison_docs) comparison_vector_store = FAISS.from_documents(comparison_splits, OpenAIEmbeddings(model="text-embedding-3-large")) comparison_retriever = comparison_vector_store.as_retriever(search_kwargs={"k": 5}) elif isinstance(comparison_input, str) and os.path.isdir(comparison_input): comparison_vector_store = load_vector_store_from_path(comparison_input) comparison_retriever = comparison_vector_store.as_retriever(search_kwargs={"k": 5}) else: raise ValueError("Invalid comparison input type. Must be a PDF file or a path to a vector store.") comparison_docs = comparison_retriever.invoke(input_text) comparison_chunks.extend(comparison_docs) # Construct the combined context combined_context = ( focus_docs + comparison_chunks ) # Read the system prompt prompt_path = "Prompts/comparison_prompt.md" if os.path.exists(prompt_path): with open(prompt_path, "r") as file: system_prompt = file.read() else: raise FileNotFoundError(f"The specified file was not found: {prompt_path}") # Create the prompt template prompt = ChatPromptTemplate.from_messages( [ ("system", system_prompt), ("human", "{input}") ] ) # Create the question-answering chain llm = ChatOpenAI(model="gpt-4o") question_answer_chain = create_stuff_documents_chain( llm, prompt, document_variable_name="context" ) # Process the combined context result = question_answer_chain.invoke({ "context": combined_context, "input": input_text }) # Display the answer display_placeholder.markdown(f"**Answer:**\n{result}") # Function to list vector store documents def list_vector_store_documents(): # Assuming documents are stored in the "Individual_All_Vectorstores" directory directory_path = "Individual_All_Vectorstores" if not os.path.exists(directory_path): raise FileNotFoundError(f"The directory '{directory_path}' does not exist. Run `create_and_save_individual_vector_stores()` to create it.") # List all available vector stores by document name documents = [f.replace("_vectorstore", "").replace("_", " ") for f in os.listdir(directory_path) if f.endswith("_vectorstore")] return documents def compare_with_long_context(api_key, anthropic_api_key, input_text, focus_plan_path, focus_city_name, selected_summaries, display_placeholder): os.environ["OPENAI_API_KEY"] = api_key os.environ["ANTHROPIC_API_KEY"] = anthropic_api_key # Load the focus plan focus_docs = [] if focus_plan_path.endswith('.pdf'): focus_loader = PyPDFLoader(focus_plan_path) focus_docs = focus_loader.load() elif focus_plan_path.endswith('.md'): focus_loader = TextLoader(focus_plan_path) focus_docs = focus_loader.load() else: raise ValueError("Unsupported file format for focus plan.") # Concatenate selected summary documents summaries_directory = "CAPS_Summaries" summaries_content = "" for filename in selected_summaries: with open(os.path.join(summaries_directory, filename), 'r') as file: summaries_content += file.read() + "\n\n" # Prepare the context focus_context = "\n\n".join([doc.page_content for doc in focus_docs]) # Create the client and message client = anthropic.Anthropic(api_key=anthropic_api_key) message = client.messages.create( model="claude-3-5-sonnet-20241022", max_tokens=1024, messages=[ {"role": "user", "content": f"{input_text}\n\nFocus Document:\n{focus_context}\n\nSummaries:\n{summaries_content}"} ] ) # Display the answer display_placeholder.markdown(f"**Answer:**\n{message.content}", unsafe_allow_html=True) # Streamlit app layout with tabs st.title("Climate Policy Analysis Tool") # API Key Input api_key = st.text_input("Enter your OpenAI API key:", type="password", key="openai_key") # Create tabs tab1, tab2, tab3, tab4, tab5 = st.tabs(["Summary Generation", "Multi-Plan QA (Shared Vectorstore)", "Multi-Plan QA (Multi-Vectorstore)", "Plan Comparison Tool", "Plan Comparison with Long Context Model"]) # First tab: Summary Generation with tab1: uploaded_file = st.file_uploader("Upload a Climate Action Plan in PDF format", type="pdf", key="upload_file") prompt_file_path = "Prompts/summary_tool_system_prompt.md" questions_file_path = "Prompts/summary_tool_questions.md" if st.button("Generate", key="generate_button") and api_key and uploaded_file: display_placeholder = st.empty() with st.spinner("Processing..."): try: results = process_pdf(api_key, uploaded_file, questions_file_path, prompt_file_path, display_placeholder) markdown_text = "\n".join(results) # Use the uploaded file's name for the download file base_name = os.path.splitext(uploaded_file.name)[0] download_file_name = f"{base_name}_Summary.md" st.download_button( label="Download Results as Markdown", data=markdown_text, file_name=download_file_name, mime="text/markdown", key="download_button" ) except Exception as e: st.error(f"An error occurred: {e}") # Second tab: Multi-Plan QA with tab2: input_text = st.text_input("Ask a question:", key="multi_plan_input") if input_text and api_key: display_placeholder2 = st.empty() process_multi_plan_qa(api_key, input_text, display_placeholder2) with tab3: user_input = st.text_input("Ask a Question", key="multi_vectorstore_input") if user_input and api_key: display_placeholder3 = st.empty() multi_plan_qa_multi_vectorstore(api_key, user_input, display_placeholder3) # Fourth tab: Plan Comparison Tool with tab4: st.header("Plan Comparison Tool") # List of documents from vector stores vectorstore_documents = list_vector_store_documents() # Option to upload a new plan or select from existing vector stores focus_option = st.radio("Choose a focus plan:", ("Select from existing vector stores", "Upload a new plan"), key="focus_option") if focus_option == "Upload a new plan": focus_uploaded_file = st.file_uploader("Upload a Climate Action Plan to compare", type="pdf", key="focus_upload") focus_city_name = st.text_input("Enter the city name for the uploaded plan:", key="focus_city_name") if focus_uploaded_file is not None and focus_city_name: # Directly use the uploaded file focus_input = focus_uploaded_file else: focus_input = None else: # Select a focus plan from existing vector stores selected_focus_plan = st.selectbox("Select a focus plan:", vectorstore_documents, key="select_focus_plan") focus_input = os.path.join("Individual_All_Vectorstores", f"{selected_focus_plan}_vectorstore") focus_city_name = selected_focus_plan.replace("_", " ") # Option to upload comparison documents or select from existing vector stores comparison_option = st.radio("Choose comparison documents:", ("Select from existing vector stores", "Upload new documents"), key="comparison_option") if comparison_option == "Upload new documents": comparison_files = st.file_uploader("Upload comparison documents", type="pdf", accept_multiple_files=True, key="comparison_files") comparison_inputs = comparison_files else: # Select comparison documents from existing vector stores selected_comparison_plans = st.multiselect("Select comparison documents:", vectorstore_documents, key="select_comparison_plans") comparison_inputs = [os.path.join("Individual_All_Vectorstores", f"{doc}_vectorstore") for doc in selected_comparison_plans] input_text = st.text_input("Ask a comparison question:", key="comparison_input") if st.button("Compare", key="compare_button") and api_key and input_text and focus_input and comparison_inputs: display_placeholder4 = st.empty() with st.spinner("Processing..."): try: # Call the process_one_to_many_query function process_one_to_many_query(api_key, focus_input, comparison_inputs, input_text, display_placeholder4) except Exception as e: st.error(f"An error occurred: {e}") # Fifth tab: Plan Comparison with Long Context Model with tab5: st.header("Plan Comparison with Long Context Model") # Anthropics API Key Input anthropic_api_key = st.text_input("Enter your Anthropic API key:", type="password", key="anthropic_key") # Option to upload a new plan or select from a list upload_option = st.radio("Choose a focus plan:", ("Select from existing plans", "Upload a new plan"), key="upload_option_long_context") if upload_option == "Upload a new plan": focus_uploaded_file = st.file_uploader("Upload a Climate Action Plan to compare", type="pdf", key="focus_upload_long_context") focus_city_name = st.text_input("Enter the city name for the uploaded plan:", key="focus_city_name_long_context") if focus_uploaded_file is not None and focus_city_name: # Save uploaded file temporarily with NamedTemporaryFile(delete=False, suffix=".pdf") as temp_pdf: temp_pdf.write(focus_uploaded_file.read()) focus_plan_path = temp_pdf.name else: focus_plan_path = None else: # List of existing plans in CAPS plan_list = [f.replace(".pdf", "") for f in os.listdir("CAPS") if f.endswith('.pdf')] selected_plan = st.selectbox("Select a plan:", plan_list, key="selected_plan_long_context") focus_plan_path = os.path.join("CAPS", selected_plan) # Extract city name from the file name focus_city_name = os.path.splitext(selected_plan)[0].replace("_", " ") # List available summary documents for selection summaries_directory = "CAPS_Summaries" summary_files = [f.replace(".md", "").replace("_", " ") for f in os.listdir(summaries_directory) if f.endswith('.md')] selected_summaries = st.multiselect("Select summary documents for comparison:", summary_files, key="selected_summaries") input_text = st.text_input("Ask a comparison question:", key="comparison_input_long_context") if st.button("Compare with Long Context", key="compare_button_long_context") and api_key and anthropic_api_key and input_text and focus_plan_path and focus_city_name: display_placeholder = st.empty() with st.spinner("Processing..."): try: compare_with_long_context(api_key, anthropic_api_key, input_text, focus_plan_path, focus_city_name, selected_summaries, display_placeholder) except Exception as e: st.error(f"An error occurred: {e}")