from sentence_transformers import SentenceTransformer from preprocess import meme_attribute, meme_filename, meme_list # This model supports two prompts: "s2p_query" and "s2s_query" for sentence-to-passage and sentence-to-sentence tasks, respectively. # They are defined in `config_sentence_transformers.json` # you can also use this model without the features of `use_memory_efficient_attention` and `unpad_inputs`. It can be worked in CPU. model = SentenceTransformer( "dunzhang/stella_en_400M_v5", trust_remote_code=True, device="cpu", config_kwargs={"use_memory_efficient_attention": False, "unpad_inputs": False} ) docs_list = list(meme_attribute.values()) doc_embeddings = model.encode(docs_list) embedded_dict = {key: embedding for key, embedding in zip(meme_attribute.keys(), doc_embeddings)}