import math from abc import abstractmethod import torch as th import torch.nn as nn import torch.nn.functional as F from .fp16_util import convert_module_to_f16, convert_module_to_f32 from .nn import avg_pool_nd, conv_nd, linear, normalization, timestep_embedding, zero_module class TimestepBlock(nn.Module): """ Any module where forward() takes timestep embeddings as a second argument. """ @abstractmethod def forward(self, x, emb): """ Apply the module to `x` given `emb` timestep embeddings. """ class TimestepEmbedSequential(nn.Sequential, TimestepBlock): """ A sequential module that passes timestep embeddings to the children that support it as an extra input. """ def forward(self, x, emb, encoder_out=None): for layer in self: if isinstance(layer, TimestepBlock): x = layer(x, emb) elif isinstance(layer, AttentionBlock): x = layer(x, encoder_out) else: x = layer(x) return x class Upsample(nn.Module): """ An upsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then upsampling occurs in the inner-two dimensions. """ def __init__(self, channels, use_conv, dims=2, out_channels=None): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.dims = dims if use_conv: self.conv = conv_nd(dims, self.channels, self.out_channels, 3, padding=1) def forward(self, x): assert x.shape[1] == self.channels if self.dims == 3: x = F.interpolate(x, (x.shape[2], x.shape[3] * 2, x.shape[4] * 2), mode="nearest") else: x = F.interpolate(x, scale_factor=2, mode="nearest") if self.use_conv: x = self.conv(x) return x class Downsample(nn.Module): """ A downsampling layer with an optional convolution. :param channels: channels in the inputs and outputs. :param use_conv: a bool determining if a convolution is applied. :param dims: determines if the signal is 1D, 2D, or 3D. If 3D, then downsampling occurs in the inner-two dimensions. """ def __init__(self, channels, use_conv, dims=2, out_channels=None): super().__init__() self.channels = channels self.out_channels = out_channels or channels self.use_conv = use_conv self.dims = dims stride = 2 if dims != 3 else (1, 2, 2) if use_conv: self.op = conv_nd(dims, self.channels, self.out_channels, 3, stride=stride, padding=1) else: assert self.channels == self.out_channels self.op = avg_pool_nd(dims, kernel_size=stride, stride=stride) def forward(self, x): assert x.shape[1] == self.channels return self.op(x) class ResBlock(TimestepBlock): """ A residual block that can optionally change the number of channels. :param channels: the number of input channels. :param emb_channels: the number of timestep embedding channels. :param dropout: the rate of dropout. :param out_channels: if specified, the number of out channels. :param use_conv: if True and out_channels is specified, use a spatial convolution instead of a smaller 1x1 convolution to change the channels in the skip connection. :param dims: determines if the signal is 1D, 2D, or 3D. :param use_checkpoint: if True, use gradient checkpointing on this module. :param up: if True, use this block for upsampling. :param down: if True, use this block for downsampling. """ def __init__( self, channels, emb_channels, dropout, out_channels=None, use_conv=False, use_scale_shift_norm=False, dims=2, use_checkpoint=False, up=False, down=False, ): super().__init__() self.channels = channels self.emb_channels = emb_channels self.dropout = dropout self.out_channels = out_channels or channels self.use_conv = use_conv self.use_checkpoint = use_checkpoint self.use_scale_shift_norm = use_scale_shift_norm self.in_layers = nn.Sequential( normalization(channels, swish=1.0), nn.Identity(), conv_nd(dims, channels, self.out_channels, 3, padding=1), ) self.updown = up or down if up: self.h_upd = Upsample(channels, False, dims) self.x_upd = Upsample(channels, False, dims) elif down: self.h_upd = Downsample(channels, False, dims) self.x_upd = Downsample(channels, False, dims) else: self.h_upd = self.x_upd = nn.Identity() self.emb_layers = nn.Sequential( nn.SiLU(), linear( emb_channels, 2 * self.out_channels if use_scale_shift_norm else self.out_channels, ), ) self.out_layers = nn.Sequential( normalization(self.out_channels, swish=0.0 if use_scale_shift_norm else 1.0), nn.SiLU() if use_scale_shift_norm else nn.Identity(), nn.Dropout(p=dropout), zero_module(conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1)), ) if self.out_channels == channels: self.skip_connection = nn.Identity() elif use_conv: self.skip_connection = conv_nd(dims, channels, self.out_channels, 3, padding=1) else: self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) def forward(self, x, emb): """ Apply the block to a Tensor, conditioned on a timestep embedding. :param x: an [N x C x ...] Tensor of features. :param emb: an [N x emb_channels] Tensor of timestep embeddings. :return: an [N x C x ...] Tensor of outputs. """ if self.updown: in_rest, in_conv = self.in_layers[:-1], self.in_layers[-1] h = in_rest(x) h = self.h_upd(h) x = self.x_upd(x) h = in_conv(h) else: h = self.in_layers(x) emb_out = self.emb_layers(emb).type(h.dtype) while len(emb_out.shape) < len(h.shape): emb_out = emb_out[..., None] if self.use_scale_shift_norm: out_norm, out_rest = self.out_layers[0], self.out_layers[1:] scale, shift = th.chunk(emb_out, 2, dim=1) h = out_norm(h) * (1 + scale) + shift h = out_rest(h) else: h = h + emb_out h = self.out_layers(h) return self.skip_connection(x) + h class AttentionBlock(nn.Module): """ An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted to the N-d case. https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. """ def __init__( self, channels, num_heads=1, num_head_channels=-1, use_checkpoint=False, encoder_channels=None, ): super().__init__() self.channels = channels if num_head_channels == -1: self.num_heads = num_heads else: assert ( channels % num_head_channels == 0 ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" self.num_heads = channels // num_head_channels self.use_checkpoint = use_checkpoint self.norm = normalization(channels, swish=0.0) self.qkv = conv_nd(1, channels, channels * 3, 1) self.attention = QKVAttention(self.num_heads) if encoder_channels is not None: self.encoder_kv = conv_nd(1, encoder_channels, channels * 2, 1) self.proj_out = zero_module(conv_nd(1, channels, channels, 1)) def forward(self, x, encoder_out=None): b, c, *spatial = x.shape qkv = self.qkv(self.norm(x).view(b, c, -1)) if encoder_out is not None: encoder_out = self.encoder_kv(encoder_out) h = self.attention(qkv, encoder_out) else: h = self.attention(qkv) h = self.proj_out(h) return x + h.reshape(b, c, *spatial) class QKVAttention(nn.Module): """ A module which performs QKV attention. Matches legacy QKVAttention + input/ouput heads shaping """ def __init__(self, n_heads): super().__init__() self.n_heads = n_heads def forward(self, qkv, encoder_kv=None): """ Apply QKV attention. :param qkv: an [N x (H * 3 * C) x T] tensor of Qs, Ks, and Vs. :return: an [N x (H * C) x T] tensor after attention. """ bs, width, length = qkv.shape assert width % (3 * self.n_heads) == 0 ch = width // (3 * self.n_heads) q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1) if encoder_kv is not None: assert encoder_kv.shape[1] == self.n_heads * ch * 2 ek, ev = encoder_kv.reshape(bs * self.n_heads, ch * 2, -1).split(ch, dim=1) k = th.cat([ek, k], dim=-1) v = th.cat([ev, v], dim=-1) scale = 1 / math.sqrt(math.sqrt(ch)) weight = th.einsum( "bct,bcs->bts", q * scale, k * scale ) # More stable with f16 than dividing afterwards weight = th.softmax(weight.float(), dim=-1).type(weight.dtype) a = th.einsum("bts,bcs->bct", weight, v) return a.reshape(bs, -1, length) class UNetModel(nn.Module): """ The full UNet model with attention and timestep embedding. :param in_channels: channels in the input Tensor. :param model_channels: base channel count for the model. :param out_channels: channels in the output Tensor. :param num_res_blocks: number of residual blocks per downsample. :param attention_resolutions: a collection of downsample rates at which attention will take place. May be a set, list, or tuple. For example, if this contains 4, then at 4x downsampling, attention will be used. :param dropout: the dropout probability. :param channel_mult: channel multiplier for each level of the UNet. :param conv_resample: if True, use learned convolutions for upsampling and downsampling. :param dims: determines if the signal is 1D, 2D, or 3D. :param num_classes: if specified (as an int), then this model will be class-conditional with `num_classes` classes. :param use_checkpoint: use gradient checkpointing to reduce memory usage. :param num_heads: the number of attention heads in each attention layer. :param num_heads_channels: if specified, ignore num_heads and instead use a fixed channel width per attention head. :param num_heads_upsample: works with num_heads to set a different number of heads for upsampling. Deprecated. :param use_scale_shift_norm: use a FiLM-like conditioning mechanism. :param resblock_updown: use residual blocks for up/downsampling. """ def __init__( self, in_channels, model_channels, out_channels, num_res_blocks, attention_resolutions, dropout=0, channel_mult=(1, 2, 4, 8), conv_resample=True, dims=2, num_classes=None, use_checkpoint=False, use_fp16=False, num_heads=1, num_head_channels=-1, num_heads_upsample=-1, use_scale_shift_norm=False, resblock_updown=False, encoder_channels=None, ): super().__init__() if num_heads_upsample == -1: num_heads_upsample = num_heads self.in_channels = in_channels self.model_channels = model_channels self.out_channels = out_channels self.num_res_blocks = num_res_blocks self.attention_resolutions = attention_resolutions self.dropout = dropout self.channel_mult = channel_mult self.conv_resample = conv_resample self.num_classes = num_classes self.use_checkpoint = use_checkpoint self.dtype = th.float16 if use_fp16 else th.float32 self.num_heads = num_heads self.num_head_channels = num_head_channels self.num_heads_upsample = num_heads_upsample time_embed_dim = model_channels * 4 self.time_embed = nn.Sequential( linear(model_channels, time_embed_dim), nn.SiLU(), linear(time_embed_dim, time_embed_dim), ) if self.num_classes is not None: self.label_emb = nn.Embedding(num_classes, time_embed_dim) ch = input_ch = int(channel_mult[0] * model_channels) self.input_blocks = nn.ModuleList( [TimestepEmbedSequential(conv_nd(dims, in_channels, ch, 3, padding=1))] ) self._feature_size = ch input_block_chans = [ch] ds = 1 for level, mult in enumerate(channel_mult): for _ in range(num_res_blocks): layers = [ ResBlock( ch, time_embed_dim, dropout, out_channels=int(mult * model_channels), dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ) ] ch = int(mult * model_channels) if ds in attention_resolutions: layers.append( AttentionBlock( ch, use_checkpoint=use_checkpoint, num_heads=num_heads, num_head_channels=num_head_channels, encoder_channels=encoder_channels, ) ) self.input_blocks.append(TimestepEmbedSequential(*layers)) self._feature_size += ch input_block_chans.append(ch) if level != len(channel_mult) - 1: out_ch = ch self.input_blocks.append( TimestepEmbedSequential( ResBlock( ch, time_embed_dim, dropout, out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, down=True, ) if resblock_updown else Downsample(ch, conv_resample, dims=dims, out_channels=out_ch) ) ) ch = out_ch input_block_chans.append(ch) ds *= 2 self._feature_size += ch self.middle_block = TimestepEmbedSequential( ResBlock( ch, time_embed_dim, dropout, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ), AttentionBlock( ch, use_checkpoint=use_checkpoint, num_heads=num_heads, num_head_channels=num_head_channels, encoder_channels=encoder_channels, ), ResBlock( ch, time_embed_dim, dropout, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ), ) self._feature_size += ch self.output_blocks = nn.ModuleList([]) for level, mult in list(enumerate(channel_mult))[::-1]: for i in range(num_res_blocks + 1): ich = input_block_chans.pop() layers = [ ResBlock( ch + ich, time_embed_dim, dropout, out_channels=int(model_channels * mult), dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, ) ] ch = int(model_channels * mult) if ds in attention_resolutions: layers.append( AttentionBlock( ch, use_checkpoint=use_checkpoint, num_heads=num_heads_upsample, num_head_channels=num_head_channels, encoder_channels=encoder_channels, ) ) if level and i == num_res_blocks: out_ch = ch layers.append( ResBlock( ch, time_embed_dim, dropout, out_channels=out_ch, dims=dims, use_checkpoint=use_checkpoint, use_scale_shift_norm=use_scale_shift_norm, up=True, ) if resblock_updown else Upsample(ch, conv_resample, dims=dims, out_channels=out_ch) ) ds //= 2 self.output_blocks.append(TimestepEmbedSequential(*layers)) self._feature_size += ch self.out = nn.Sequential( normalization(ch, swish=1.0), nn.Identity(), zero_module(conv_nd(dims, input_ch, out_channels, 3, padding=1)), ) self.use_fp16 = use_fp16 def convert_to_fp16(self): """ Convert the torso of the model to float16. """ self.input_blocks.apply(convert_module_to_f16) self.middle_block.apply(convert_module_to_f16) self.output_blocks.apply(convert_module_to_f16) def convert_to_fp32(self): """ Convert the torso of the model to float32. """ self.input_blocks.apply(convert_module_to_f32) self.middle_block.apply(convert_module_to_f32) self.output_blocks.apply(convert_module_to_f32) def forward(self, x, timesteps, y=None): """ Apply the model to an input batch. :param x: an [N x C x ...] Tensor of inputs. :param timesteps: a 1-D batch of timesteps. :param y: an [N] Tensor of labels, if class-conditional. :return: an [N x C x ...] Tensor of outputs. """ assert (y is not None) == ( self.num_classes is not None ), "must specify y if and only if the model is class-conditional" hs = [] emb = self.time_embed(timestep_embedding(timesteps, self.model_channels)) if self.num_classes is not None: assert y.shape == (x.shape[0],) emb = emb + self.label_emb(y) h = x.type(self.dtype) for module in self.input_blocks: h = module(h, emb) hs.append(h) h = self.middle_block(h, emb) for module in self.output_blocks: h = th.cat([h, hs.pop()], dim=1) h = module(h, emb) h = h.type(x.dtype) return self.out(h) class SuperResUNetModel(UNetModel): """ A UNetModel that performs super-resolution. Expects an extra kwarg `low_res` to condition on a low-resolution image. """ def __init__(self, *args, **kwargs): if "in_channels" in kwargs: kwargs = dict(kwargs) kwargs["in_channels"] = kwargs["in_channels"] * 2 else: # Curse you, Python. Or really, just curse positional arguments :|. args = list(args) args[1] = args[1] * 2 super().__init__(*args, **kwargs) def forward(self, x, timesteps, low_res=None, **kwargs): _, _, new_height, new_width = x.shape upsampled = F.interpolate(low_res, (new_height, new_width), mode="bilinear") x = th.cat([x, upsampled], dim=1) return super().forward(x, timesteps, **kwargs) class InpaintUNetModel(UNetModel): """ A UNetModel which can perform inpainting. """ def __init__(self, *args, **kwargs): if "in_channels" in kwargs: kwargs = dict(kwargs) kwargs["in_channels"] = kwargs["in_channels"] * 2 + 1 else: # Curse you, Python. Or really, just curse positional arguments :|. args = list(args) args[1] = args[1] * 2 + 1 super().__init__(*args, **kwargs) def forward(self, x, timesteps, inpaint_image=None, inpaint_mask=None, **kwargs): if inpaint_image is None: inpaint_image = th.zeros_like(x) if inpaint_mask is None: inpaint_mask = th.zeros_like(x[:, :1]) return super().forward( th.cat([x, inpaint_image * inpaint_mask, inpaint_mask], dim=1), timesteps, **kwargs, ) class SuperResInpaintUNetModel(UNetModel): """ A UNetModel which can perform both upsampling and inpainting. """ def __init__(self, *args, **kwargs): if "in_channels" in kwargs: kwargs = dict(kwargs) kwargs["in_channels"] = kwargs["in_channels"] * 3 + 1 else: # Curse you, Python. Or really, just curse positional arguments :|. args = list(args) args[1] = args[1] * 3 + 1 super().__init__(*args, **kwargs) def forward( self, x, timesteps, inpaint_image=None, inpaint_mask=None, low_res=None, **kwargs, ): if inpaint_image is None: inpaint_image = th.zeros_like(x) if inpaint_mask is None: inpaint_mask = th.zeros_like(x[:, :1]) _, _, new_height, new_width = x.shape upsampled = F.interpolate(low_res, (new_height, new_width), mode="bilinear") return super().forward( th.cat([x, inpaint_image * inpaint_mask, inpaint_mask, upsampled], dim=1), timesteps, **kwargs, )