""" Utilities for changing sampling schedules of a trained model. Simplified from: https://github.com/openai/guided-diffusion/blob/main/guided_diffusion/respace.py """ import numpy as np import torch as th from .gaussian_diffusion import GaussianDiffusion def space_timesteps(num_timesteps, section_counts): """ Create a list of timesteps to use from an original diffusion process, given the number of timesteps we want to take from equally-sized portions of the original process. For example, if there's 300 timesteps and the section counts are [10,15,20] then the first 100 timesteps are strided to be 10 timesteps, the second 100 are strided to be 15 timesteps, and the final 100 are strided to be 20. :param num_timesteps: the number of diffusion steps in the original process to divide up. :param section_counts: either a list of numbers, or a string containing comma-separated numbers, indicating the step count per section. As a special case, use "ddimN" where N is a number of steps to use the striding from the DDIM paper. :return: a set of diffusion steps from the original process to use. """ if isinstance(section_counts, str): if section_counts.startswith("ddim"): desired_count = int(section_counts[len("ddim") :]) for i in range(1, num_timesteps): if len(range(0, num_timesteps, i)) == desired_count: return set(range(0, num_timesteps, i)) raise ValueError(f"cannot create exactly {num_timesteps} steps with an integer stride") elif section_counts == "fast27": steps = space_timesteps(num_timesteps, "10,10,3,2,2") # Help reduce DDIM artifacts from noisiest timesteps. steps.remove(num_timesteps - 1) steps.add(num_timesteps - 3) return steps section_counts = [int(x) for x in section_counts.split(",")] size_per = num_timesteps // len(section_counts) extra = num_timesteps % len(section_counts) start_idx = 0 all_steps = [] for i, section_count in enumerate(section_counts): size = size_per + (1 if i < extra else 0) if size < section_count: raise ValueError(f"cannot divide section of {size} steps into {section_count}") if section_count <= 1: frac_stride = 1 else: frac_stride = (size - 1) / (section_count - 1) cur_idx = 0.0 taken_steps = [] for _ in range(section_count): taken_steps.append(start_idx + round(cur_idx)) cur_idx += frac_stride all_steps += taken_steps start_idx += size return set(all_steps) class SpacedDiffusion(GaussianDiffusion): """ A diffusion process which can skip steps in a base diffusion process. :param use_timesteps: a collection (sequence or set) of timesteps from the original diffusion process to retain. :param kwargs: the kwargs to create the base diffusion process. """ def __init__(self, use_timesteps, **kwargs): self.use_timesteps = set(use_timesteps) self.timestep_map = [] self.original_num_steps = len(kwargs["betas"]) base_diffusion = GaussianDiffusion(**kwargs) # pylint: disable=missing-kwoa last_alpha_cumprod = 1.0 new_betas = [] for i, alpha_cumprod in enumerate(base_diffusion.alphas_cumprod): if i in self.use_timesteps: new_betas.append(1 - alpha_cumprod / last_alpha_cumprod) last_alpha_cumprod = alpha_cumprod self.timestep_map.append(i) kwargs["betas"] = np.array(new_betas) super().__init__(**kwargs) def p_mean_variance(self, model, *args, **kwargs): return super().p_mean_variance(self._wrap_model(model), *args, **kwargs) def condition_mean(self, cond_fn, *args, **kwargs): return super().condition_mean(self._wrap_model(cond_fn), *args, **kwargs) def condition_score(self, cond_fn, *args, **kwargs): return super().condition_score(self._wrap_model(cond_fn), *args, **kwargs) def _wrap_model(self, model): if isinstance(model, _WrappedModel): return model return _WrappedModel(model, self.timestep_map, self.original_num_steps) class _WrappedModel: def __init__(self, model, timestep_map, original_num_steps): self.model = model self.timestep_map = timestep_map self.original_num_steps = original_num_steps def __call__(self, x, ts, **kwargs): map_tensor = th.tensor(self.timestep_map, device=ts.device, dtype=ts.dtype) new_ts = map_tensor[ts] return self.model(x, new_ts, **kwargs)