""" Various utilities for neural networks. """ import math import torch as th import torch.nn as nn import torch.nn.functional as F class GroupNorm32(nn.GroupNorm): def __init__(self, num_groups, num_channels, swish, eps=1e-5): super().__init__(num_groups=num_groups, num_channels=num_channels, eps=eps) self.swish = swish def forward(self, x): y = super().forward(x.float()).to(x.dtype) if self.swish == 1.0: y = F.silu(y) elif self.swish: y = y * F.sigmoid(y * float(self.swish)) return y def conv_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D convolution module. """ if dims == 1: return nn.Conv1d(*args, **kwargs) elif dims == 2: return nn.Conv2d(*args, **kwargs) elif dims == 3: return nn.Conv3d(*args, **kwargs) raise ValueError(f"unsupported dimensions: {dims}") def linear(*args, **kwargs): """ Create a linear module. """ return nn.Linear(*args, **kwargs) def avg_pool_nd(dims, *args, **kwargs): """ Create a 1D, 2D, or 3D average pooling module. """ if dims == 1: return nn.AvgPool1d(*args, **kwargs) elif dims == 2: return nn.AvgPool2d(*args, **kwargs) elif dims == 3: return nn.AvgPool3d(*args, **kwargs) raise ValueError(f"unsupported dimensions: {dims}") def zero_module(module): """ Zero out the parameters of a module and return it. """ for p in module.parameters(): p.detach().zero_() return module def scale_module(module, scale): """ Scale the parameters of a module and return it. """ for p in module.parameters(): p.detach().mul_(scale) return module def normalization(channels, swish=0.0): """ Make a standard normalization layer, with an optional swish activation. :param channels: number of input channels. :return: an nn.Module for normalization. """ return GroupNorm32(num_channels=channels, num_groups=32, swish=swish) def timestep_embedding(timesteps, dim, max_period=10000): """ Create sinusoidal timestep embeddings. :param timesteps: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an [N x dim] Tensor of positional embeddings. """ half = dim // 2 freqs = th.exp( -math.log(max_period) * th.arange(start=0, end=half, dtype=th.float32) / half ).to(device=timesteps.device) args = timesteps[:, None].float() * freqs[None] embedding = th.cat([th.cos(args), th.sin(args)], dim=-1) if dim % 2: embedding = th.cat([embedding, th.zeros_like(embedding[:, :1])], dim=-1) return embedding