import os import streamlit as st from dotenv import load_dotenv from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings, HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.chat_models import ChatOpenAI from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from langchain.chat_models.gigachat import GigaChat from htmlTemplates import css, bot_template, user_template from langchain.llms import HuggingFaceHub, LlamaCpp from huggingface_hub import snapshot_download, hf_hub_download credentials = os.getenv("GIGACHAT_CREDENTIALS") print(credentials) # from prompts import CONDENSE_QUESTION_PROMPT repo_name = "IlyaGusev/saiga_mistral_7b_gguf" model_name = "model-q4_K.gguf" #snapshot_download(repo_id=repo_name, local_dir=".", allow_patterns=model_name) def get_pdf_text(pdf_docs): text = "" for pdf in pdf_docs: pdf_reader = PdfReader(pdf) for page in pdf_reader.pages: text += page.extract_text() return text def get_text_chunks(text): text_splitter = CharacterTextSplitter(separator="\n", chunk_size=1000, # 1000 chunk_overlap=200, # 200 length_function=len ) chunks = text_splitter.split_text(text) return chunks def get_vectorstore(text_chunks): #embeddings = OpenAIEmbeddings() #embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl") embeddings = HuggingFaceEmbeddings(model_name="intfloat/multilingual-e5-large") #embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/paraphrase-multilingual-mpnet-base-v2") vectorstore = FAISS.from_texts(texts=text_chunks, embedding=embeddings) return vectorstore def get_conversation_chain(vectorstore, model_name): # llm = LlamaCpp(model_path=model_name, # temperature=0.1, # top_k=30, # top_p=0.9, # streaming=True, # n_ctx=2048, # n_parts=1, # echo=True # ) # llm = ChatOpenAI() llm = GigaChat(credentials=credentials, verify_ssl_certs=False) memory = ConversationBufferMemory(memory_key='chat_history', input_key='question', output_key='answer', return_messages=True) conversation_chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=vectorstore.as_retriever(), memory=memory, return_source_documents=True ) return conversation_chain def handle_userinput(user_question): response = st.session_state.conversation({'question': user_question}) st.session_state.chat_history = response['chat_history'] st.session_state.retrieved_text = response['source_documents'] for i, (message, text) in enumerate(zip(st.session_state.chat_history, st.session_state.retrieved_text)): if i % 3 == 0: st.write(user_template.replace( "{{MSG}}", message.content), unsafe_allow_html=True) else: st.write(bot_template.replace( "{{MSG}}", message.content), unsafe_allow_html=True) print(text) st.write(bot_template.replace( "{{MSG}}", str(text.page_content)), unsafe_allow_html=True) #for text in enumerate(st.session_state.retrieved_text): # st.write(text[1].page_content, '\n') #print(response['source_documents'][0]) # main code load_dotenv() st.set_page_config(page_title="Chat with multiple PDFs", page_icon=":books:") st.write(css, unsafe_allow_html=True) if "conversation" not in st.session_state: st.session_state.conversation = None if "chat_history" not in st.session_state: st.session_state.chat_history = None st.header("Chat with multiple PDFs :books:") user_question = st.text_input("Ask a question about your documents: ") if user_question: handle_userinput(user_question) with st.sidebar: st.subheader("Your documents") pdf_docs = st.file_uploader( "Upload your PDFs here and click on 'Process'", accept_multiple_files=True) if st.button("Process"): with st.spinner("Processing"): # get pdf text raw_text = get_pdf_text(pdf_docs) # get the text chunks text_chunks = get_text_chunks(raw_text) # create vector store vectorstore = get_vectorstore(text_chunks) # create conversation chain st.session_state.conversation = get_conversation_chain(vectorstore, model_name)