import cv2 import numpy as np from ultralytics import YOLO from ultralytics.yolo.utils.ops import scale_image import random import torch class ImageSegmenter: def __init__(self, model_type="yolov8s-seg") -> None: self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.model = YOLO('models/'+ model_type +'.pt') self.model.to(self.device) self.is_show_bounding_boxes = True self.is_show_segmentation_boundary = False self.is_show_segmentation = False self.confidence_threshold = 0.5 self.cls_clr = {} # params self.bb_thickness = 2 self.bb_clr = (255, 0, 0) # variables self.masks = {} def get_cls_clr(self, cls_id): if cls_id in self.cls_clr: return self.cls_clr[cls_id] # gen rand color r = random.randint(50, 200) g = random.randint(50, 200) b = random.randint(50, 200) self.cls_clr[cls_id] = (r, g, b) return (r, g, b) def predict(self, image): # params objects_data = [] image = image.copy() predictions = self.model.predict(image) cls_ids = predictions[0].boxes.cls.cpu().numpy() bounding_boxes = predictions[0].boxes.xyxy.int().cpu().numpy() cls_conf = predictions[0].boxes.conf.cpu().numpy() # segmentation if predictions[0].masks: seg_mask_boundary = predictions[0].masks.xy seg_mask = predictions[0].masks.data.cpu().numpy() else: seg_mask_boundary, seg_mask = [], np.array([]) for id, cls in enumerate(cls_ids): cls_clr = self.get_cls_clr(cls) # draw filled segmentation region if seg_mask.any() and cls_conf[id] > self.confidence_threshold: self.masks[id] = seg_mask[id] if self.is_show_segmentation: alpha = 0.8 # converting the mask from 1 channel to 3 channels colored_mask = np.expand_dims(seg_mask[id], 0).repeat(3, axis=0) colored_mask = np.moveaxis(colored_mask, 0, -1) # Resize the mask to match the image size, if necessary if image.shape[:2] != seg_mask[id].shape[:2]: colored_mask = cv2.resize(colored_mask, (image.shape[1], image.shape[0])) # filling the mased area with class color masked = np.ma.MaskedArray(image, mask=colored_mask, fill_value=cls_clr) image_overlay = masked.filled() image = cv2.addWeighted(image, 1 - alpha, image_overlay, alpha, 0) # draw bounding box with class name and score if self.is_show_bounding_boxes and cls_conf[id] > self.confidence_threshold: (x1, y1, x2, y2) = bounding_boxes[id] cls_name = self.model.names[cls] cls_confidence = cls_conf[id] disp_str = cls_name +' '+ str(round(cls_confidence, 2)) cv2.rectangle(image, (x1, y1), (x2, y2), cls_clr, self.bb_thickness) cv2.rectangle(image, (x1, y1), (x1+(len(disp_str)*9), y1+15), cls_clr, -1) cv2.putText(image, disp_str, (x1+5, y1+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (255, 255, 255), 1) # draw segmentation boundary if len(seg_mask_boundary) and self.is_show_segmentation_boundary and cls_conf[id] > self.confidence_threshold: cv2.polylines(image, [np.array(seg_mask_boundary[id], dtype=np.int32)], isClosed=True, color=cls_clr, thickness=2) # object variables (x1, y1, x2, y2) = bounding_boxes[id] center = x1+(x2-x1)//2, y1+(y2-y1)//2 objects_data.append([cls, self.model.names[cls], center, self.masks[id], cls_clr]) return image, objects_data