#include "inference.h" #include #define benchmark #define ELOG DCSP_CORE::DCSP_CORE() { } DCSP_CORE::~DCSP_CORE() { delete session; } template char* BlobFromImage(cv::Mat& iImg, T& iBlob) { int channels = iImg.channels(); int imgHeight = iImg.rows; int imgWidth = iImg.cols; for (int c = 0; c < channels; c++) { for (int h = 0; h < imgHeight; h++) { for (int w = 0; w < imgWidth; w++) { iBlob[c * imgWidth * imgHeight + h * imgWidth + w] = (std::remove_pointer::type)((iImg.at(h, w)[c]) / 255.0f); } } } return RET_OK; } char* PostProcess(cv::Mat& iImg, std::vector iImgSize, cv::Mat& oImg) { cv::Mat img = iImg.clone(); cv::resize(iImg, oImg, cv::Size(iImgSize.at(0), iImgSize.at(1))); if (img.channels() == 1) { cv::cvtColor(oImg, oImg, cv::COLOR_GRAY2BGR); } cv::cvtColor(oImg, oImg, cv::COLOR_BGR2RGB); return RET_OK; } char* DCSP_CORE::CreateSession(DCSP_INIT_PARAM &iParams) { char* Ret = RET_OK; std::regex pattern("[\u4e00-\u9fa5]"); bool result = std::regex_search(iParams.ModelPath, pattern); if (result) { Ret = "[DCSP_ONNX]:model path error.change your model path without chinese characters."; std::cout << Ret << std::endl; return Ret; } try { rectConfidenceThreshold = iParams.RectConfidenceThreshold; iouThreshold = iParams.iouThreshold; imgSize = iParams.imgSize; modelType = iParams.ModelType; env = Ort::Env(ORT_LOGGING_LEVEL_WARNING, "Yolo"); Ort::SessionOptions sessionOption; if (iParams.CudaEnable) { cudaEnable = iParams.CudaEnable; OrtCUDAProviderOptions cudaOption; cudaOption.device_id = 0; sessionOption.AppendExecutionProvider_CUDA(cudaOption); //OrtOpenVINOProviderOptions ovOption; //sessionOption.AppendExecutionProvider_OpenVINO(ovOption); } sessionOption.SetGraphOptimizationLevel(GraphOptimizationLevel::ORT_ENABLE_ALL); sessionOption.SetIntraOpNumThreads(iParams.IntraOpNumThreads); sessionOption.SetLogSeverityLevel(iParams.LogSeverityLevel); int ModelPathSize = MultiByteToWideChar(CP_UTF8, 0, iParams.ModelPath.c_str(), static_cast(iParams.ModelPath.length()), nullptr, 0); wchar_t* wide_cstr = new wchar_t[ModelPathSize + 1]; MultiByteToWideChar(CP_UTF8, 0, iParams.ModelPath.c_str(), static_cast(iParams.ModelPath.length()), wide_cstr, ModelPathSize); wide_cstr[ModelPathSize] = L'\0'; const wchar_t* modelPath = wide_cstr; session = new Ort::Session(env, modelPath, sessionOption); Ort::AllocatorWithDefaultOptions allocator; size_t inputNodesNum = session->GetInputCount(); for (size_t i = 0; i < inputNodesNum; i++) { Ort::AllocatedStringPtr input_node_name = session->GetInputNameAllocated(i, allocator); char* temp_buf = new char[50]; strcpy(temp_buf, input_node_name.get()); inputNodeNames.push_back(temp_buf); } size_t OutputNodesNum = session->GetOutputCount(); for (size_t i = 0; i < OutputNodesNum; i++) { Ort::AllocatedStringPtr output_node_name = session->GetOutputNameAllocated(i, allocator); char* temp_buf = new char[10]; strcpy(temp_buf, output_node_name.get()); outputNodeNames.push_back(temp_buf); } options = Ort::RunOptions{ nullptr }; WarmUpSession(); //std::cout << OrtGetApiBase()->GetVersionString() << std::endl;; Ret = RET_OK; return Ret; } catch (const std::exception& e) { const char* str1 = "[DCSP_ONNX]:"; const char* str2 = e.what(); std::string result = std::string(str1) + std::string(str2); char* merged = new char[result.length() + 1]; std::strcpy(merged, result.c_str()); std::cout << merged << std::endl; delete[] merged; //return merged; return "[DCSP_ONNX]:Create session failed."; } } char* DCSP_CORE::RunSession(cv::Mat &iImg, std::vector& oResult) { #ifdef benchmark clock_t starttime_1 = clock(); #endif // benchmark char* Ret = RET_OK; cv::Mat processedImg; PostProcess(iImg, imgSize, processedImg); if (modelType < 4) { float* blob = new float[processedImg.total() * 3]; BlobFromImage(processedImg, blob); std::vector inputNodeDims = { 1,3,imgSize.at(0),imgSize.at(1) }; TensorProcess(starttime_1, iImg, blob, inputNodeDims, oResult); } return Ret; } template char* DCSP_CORE::TensorProcess(clock_t& starttime_1, cv::Mat& iImg, N& blob, std::vector& inputNodeDims, std::vector& oResult) { Ort::Value inputTensor = Ort::Value::CreateTensor::type>(Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), inputNodeDims.data(), inputNodeDims.size()); #ifdef benchmark clock_t starttime_2 = clock(); #endif // benchmark auto outputTensor = session->Run(options, inputNodeNames.data(), &inputTensor, 1, outputNodeNames.data(), outputNodeNames.size()); #ifdef benchmark clock_t starttime_3 = clock(); #endif // benchmark Ort::TypeInfo typeInfo = outputTensor.front().GetTypeInfo(); auto tensor_info = typeInfo.GetTensorTypeAndShapeInfo(); std::vectoroutputNodeDims = tensor_info.GetShape(); std::remove_pointer::type* output = outputTensor.front().GetTensorMutableData::type>(); delete blob; switch (modelType) { case 1: { int strideNum = outputNodeDims[2]; int signalResultNum = outputNodeDims[1]; std::vector class_ids; std::vector confidences; std::vector boxes; cv::Mat rowData(signalResultNum, strideNum, CV_32F, output); rowData = rowData.t(); float* data = (float*)rowData.data; float x_factor = iImg.cols / 640.; float y_factor = iImg.rows / 640.; for (int i = 0; i < strideNum; ++i) { float* classesScores = data + 4; cv::Mat scores(1, classesNum, CV_32FC1, classesScores); cv::Point class_id; double maxClassScore; cv::minMaxLoc(scores, 0, &maxClassScore, 0, &class_id); if (maxClassScore > rectConfidenceThreshold) { confidences.push_back(maxClassScore); class_ids.push_back(class_id.x); float x = data[0]; float y = data[1]; float w = data[2]; float h = data[3]; int left = int((x - 0.5 * w) * x_factor); int top = int((y - 0.5 * h) * y_factor); int width = int(w * x_factor); int height = int(h * y_factor); boxes.push_back(cv::Rect(left, top, width, height)); } data += signalResultNum; } std::vector nmsResult; cv::dnn::NMSBoxes(boxes, confidences, rectConfidenceThreshold, iouThreshold, nmsResult); for (int i = 0; i < nmsResult.size(); ++i) { int idx = nmsResult[i]; DCSP_RESULT result; result.classId = class_ids[idx]; result.confidence = confidences[idx]; result.box = boxes[idx]; oResult.push_back(result); } #ifdef benchmark clock_t starttime_4 = clock(); double pre_process_time = (double)(starttime_2 - starttime_1) / CLOCKS_PER_SEC * 1000; double process_time = (double)(starttime_3 - starttime_2) / CLOCKS_PER_SEC * 1000; double post_process_time = (double)(starttime_4 - starttime_3) / CLOCKS_PER_SEC * 1000; if (cudaEnable) { std::cout << "[DCSP_ONNX(CUDA)]: " << pre_process_time << "ms pre-process, " << process_time << "ms inference, " << post_process_time << "ms post-process." << std::endl; } else { std::cout << "[DCSP_ONNX(CPU)]: " << pre_process_time << "ms pre-process, " << process_time << "ms inference, " << post_process_time << "ms post-process." << std::endl; } #endif // benchmark break; } } char* Ret = RET_OK; return Ret; } char* DCSP_CORE::WarmUpSession() { clock_t starttime_1 = clock(); char* Ret = RET_OK; cv::Mat iImg = cv::Mat(cv::Size(imgSize.at(0), imgSize.at(1)), CV_8UC3); cv::Mat processedImg; PostProcess(iImg, imgSize, processedImg); if (modelType < 4) { float* blob = new float[iImg.total() * 3]; BlobFromImage(processedImg, blob); std::vector YOLO_input_node_dims = { 1,3,imgSize.at(0),imgSize.at(1) }; Ort::Value input_tensor = Ort::Value::CreateTensor(Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU), blob, 3 * imgSize.at(0) * imgSize.at(1), YOLO_input_node_dims.data(), YOLO_input_node_dims.size()); auto output_tensors = session->Run(options, inputNodeNames.data(), &input_tensor, 1, outputNodeNames.data(), outputNodeNames.size()); delete[] blob; clock_t starttime_4 = clock(); double post_process_time = (double)(starttime_4 - starttime_1) / CLOCKS_PER_SEC * 1000; if (cudaEnable) { std::cout << "[DCSP_ONNX(CUDA)]: " << "Cuda warm-up cost " << post_process_time << " ms. " << std::endl; } } return Ret; }