import torch import torch.nn as nn class Slice(nn.Module): def __init__(self, start_index=1): super(Slice, self).__init__() self.start_index = start_index def forward(self, x): return x[:, self.start_index:] class AddReadout(nn.Module): def __init__(self, start_index=1): super(AddReadout, self).__init__() self.start_index = start_index def forward(self, x): if self.start_index == 2: readout = (x[:, 0] + x[:, 1]) / 2 else: readout = x[:, 0] return x[:, self.start_index:] + readout.unsqueeze(1) class ProjectReadout(nn.Module): def __init__(self, in_features, start_index=1): super(ProjectReadout, self).__init__() self.start_index = start_index self.project = nn.Sequential(nn.Linear(2 * in_features, in_features), nn.GELU()) def forward(self, x): readout = x[:, 0].unsqueeze(1).expand_as(x[:, self.start_index:]) features = torch.cat((x[:, self.start_index:], readout), -1) return self.project(features) class Transpose(nn.Module): def __init__(self, dim0, dim1): super(Transpose, self).__init__() self.dim0 = dim0 self.dim1 = dim1 def forward(self, x): x = x.transpose(self.dim0, self.dim1) return x activations = {} def get_activation(name): def hook(model, input, output): activations[name] = output return hook def forward_default(pretrained, x, function_name="forward_features"): exec(f"pretrained.model.{function_name}(x)") layer_1 = pretrained.activations["1"] layer_2 = pretrained.activations["2"] layer_3 = pretrained.activations["3"] layer_4 = pretrained.activations["4"] if hasattr(pretrained, "act_postprocess1"): layer_1 = pretrained.act_postprocess1(layer_1) if hasattr(pretrained, "act_postprocess2"): layer_2 = pretrained.act_postprocess2(layer_2) if hasattr(pretrained, "act_postprocess3"): layer_3 = pretrained.act_postprocess3(layer_3) if hasattr(pretrained, "act_postprocess4"): layer_4 = pretrained.act_postprocess4(layer_4) return layer_1, layer_2, layer_3, layer_4 def forward_adapted_unflatten(pretrained, x, function_name="forward_features"): b, c, h, w = x.shape exec(f"glob = pretrained.model.{function_name}(x)") layer_1 = pretrained.activations["1"] layer_2 = pretrained.activations["2"] layer_3 = pretrained.activations["3"] layer_4 = pretrained.activations["4"] layer_1 = pretrained.act_postprocess1[0:2](layer_1) layer_2 = pretrained.act_postprocess2[0:2](layer_2) layer_3 = pretrained.act_postprocess3[0:2](layer_3) layer_4 = pretrained.act_postprocess4[0:2](layer_4) unflatten = nn.Sequential( nn.Unflatten( 2, torch.Size( [ h // pretrained.model.patch_size[1], w // pretrained.model.patch_size[0], ] ), ) ) if layer_1.ndim == 3: layer_1 = unflatten(layer_1) if layer_2.ndim == 3: layer_2 = unflatten(layer_2) if layer_3.ndim == 3: layer_3 = unflatten(layer_3) if layer_4.ndim == 3: layer_4 = unflatten(layer_4) layer_1 = pretrained.act_postprocess1[3: len(pretrained.act_postprocess1)](layer_1) layer_2 = pretrained.act_postprocess2[3: len(pretrained.act_postprocess2)](layer_2) layer_3 = pretrained.act_postprocess3[3: len(pretrained.act_postprocess3)](layer_3) layer_4 = pretrained.act_postprocess4[3: len(pretrained.act_postprocess4)](layer_4) return layer_1, layer_2, layer_3, layer_4 def get_readout_oper(vit_features, features, use_readout, start_index=1): if use_readout == "ignore": readout_oper = [Slice(start_index)] * len(features) elif use_readout == "add": readout_oper = [AddReadout(start_index)] * len(features) elif use_readout == "project": readout_oper = [ ProjectReadout(vit_features, start_index) for out_feat in features ] else: assert ( False ), "wrong operation for readout token, use_readout can be 'ignore', 'add', or 'project'" return readout_oper def make_backbone_default( model, features=[96, 192, 384, 768], size=[384, 384], hooks=[2, 5, 8, 11], vit_features=768, use_readout="ignore", start_index=1, start_index_readout=1, ): pretrained = nn.Module() pretrained.model = model pretrained.model.blocks[hooks[0]].register_forward_hook(get_activation("1")) pretrained.model.blocks[hooks[1]].register_forward_hook(get_activation("2")) pretrained.model.blocks[hooks[2]].register_forward_hook(get_activation("3")) pretrained.model.blocks[hooks[3]].register_forward_hook(get_activation("4")) pretrained.activations = activations readout_oper = get_readout_oper(vit_features, features, use_readout, start_index_readout) # 32, 48, 136, 384 pretrained.act_postprocess1 = nn.Sequential( readout_oper[0], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[0], kernel_size=1, stride=1, padding=0, ), nn.ConvTranspose2d( in_channels=features[0], out_channels=features[0], kernel_size=4, stride=4, padding=0, bias=True, dilation=1, groups=1, ), ) pretrained.act_postprocess2 = nn.Sequential( readout_oper[1], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[1], kernel_size=1, stride=1, padding=0, ), nn.ConvTranspose2d( in_channels=features[1], out_channels=features[1], kernel_size=2, stride=2, padding=0, bias=True, dilation=1, groups=1, ), ) pretrained.act_postprocess3 = nn.Sequential( readout_oper[2], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[2], kernel_size=1, stride=1, padding=0, ), ) pretrained.act_postprocess4 = nn.Sequential( readout_oper[3], Transpose(1, 2), nn.Unflatten(2, torch.Size([size[0] // 16, size[1] // 16])), nn.Conv2d( in_channels=vit_features, out_channels=features[3], kernel_size=1, stride=1, padding=0, ), nn.Conv2d( in_channels=features[3], out_channels=features[3], kernel_size=3, stride=2, padding=1, ), ) pretrained.model.start_index = start_index pretrained.model.patch_size = [16, 16] return pretrained