scitonic / main.py
vaishakgkumar's picture
Update main.py
d94e2c3 verified
raw
history blame
8.2 kB
import os
import gradio as gr
import autogen
from openai import OpenAI
import json
from src.mapper.e5map import E5Mapper
from src.mapper.scimap import scimap
from src.mapper.parser import MapperParser
from src.datatonic.dataloader import DataLoader
from src.agentics.agents import AgentsFactory
title = """# Welcome to 👩🏻‍🔬🧪SciTonic
this is a highly adaptive technical operator that will listen to your query and load datasets and multi-agent teams based on those. Simply describe your problem in detail, ask a question and provide a reasoning method to get started:
"""
def update_config_file(api_key):
config_path = "./src/config/OAI_CONFIG_LIST.json"
with open(config_path, "r") as file:
config = json.load(file)
for item in config:
item["api_key"] = api_key
with open(config_path, "w") as file:
json.dump(config, file, indent=4)
def process_audio_image_input(input_type, input_data, MODEL_ID):
PAT = os.getenv("CLARIFAI_PAT")
if not PAT:
raise ValueError("Clarifai Personal Access Token not set in environment variables")
channel = ClarifaiChannel.get_grpc_channel()
stub = service_pb2_grpc.V2Stub(channel)
metadata = (("authorization", "Key " + PAT),)
if input_type == "audio":
file_bytes = input_data
elif input_type == "image":
file_bytes = base64.b64encode(input_data).decode("utf-8")
post_model_outputs_response = stub.PostModelOutputs(
service_pb2.PostModelOutputsRequest(
model_id=MODEL_ID,
inputs=[
resources_pb2.Input(
data=resources_pb2.Data(
audio=resources_pb2.Audio(base64=file_bytes) if input_type == "audio" else None,
image=resources_pb2.Image(base64=file_bytes) if input_type == "image" else None
)
)
],
),
metadata=metadata,
)
if post_model_outputs_response.status.code != status_code_pb2.SUCCESS:
print(post_model_outputs_response.status)
raise Exception(
"Post model outputs failed, status: "
+ post_model_outputs_response.status.description
)
output = post_model_outputs_response.outputs[0]
return output.data.text.raw
def process_query(oai_key, query, max_auto_reply):
update_config_file(oai_key)
os.environ['OAI_KEY'] = oai_key
llm_config = autogen.config_list_from_json(
env_or_file="./src/config/OAI_CONFIG_LIST.json",
filter_dict={"model": {"gpt-4", "gpt-3.5-turbo-16k", "gpt-4-1106-preview"}}
)
# Initialize mappers
taskmapper = E5Mapper(oai_key)
teammapper = scimap(oai_key)
# Get responses from mappers
taskmap_response = taskmapper.get_completion(query)
teammap_response = teammapper.get_completion(query)
# Parse responses
task = MapperParser.parse_taskmapper_response(taskmap_response)
team = MapperParser.parse_teammapper_response(teammap_response)
# Load dataset based on task
data_loader = DataLoader()
dataset = data_loader.load_and_process(task.lower())
# Save dataset to a JSON file and get the file path
json_file_name = "dataset.json" # Provide a suitable file name
json_file_path = os.path.join("./src/datatonic/", json_file_name) # Define the complete file path
data_loader.save_to_json(dataset, json_file_path)
# Initialize AgentsFactory with the path to the JSON file
agents_factory = AgentsFactory(llm_config, json_file_path)
# Retrieve the Boss Assistant agent
boss_aid = agents_factory.scitonic()
def _reset_agents():
boss_aid.reset()
# Define functions for each team
def codingteam():
_reset_agents()
team = autogen.GroupChat(
agents=[boss_aid, coder, pm, reviewer],
messages=[],
max_round=12,
speaker_selection_method="round_robin"
)
manager = autogen.GroupChatManager(groupchat=team, llm_config=llm_config)
boss_aid.initiate_chat(manager, problem=PROBLEM, n_results=3)
def covid19team():
_reset_agents()
team = autogen.GroupChat(
agents=[boss_aid, covid19_scientist, healthcare_expert, finance_analyst],
messages=[],
max_round=12
)
manager = autogen.GroupChatManager(groupchat=team, llm_config=llm_config)
boss_aid.initiate_chat(manager, covid19_problem=COVID19_PROBLEM, n_results=3)
def financeteam():
_reset_agents()
team = autogen.GroupChat(
agents=[boss_aid, finance_analyst, pm, reviewer, finance_expert],
messages=[],
max_round=12,
speaker_selection_method="round_robin"
)
manager = autogen.GroupChatManager(groupchat=team, llm_config=llm_config)
boss_aid.initiate_chat(manager, finance_problem=FINANCE_PROBLEM, n_results=3)
def debateteam():
_reset_agents()
team = autogen.GroupChat(
agents=[boss_aid, debate_expert, pm, reviewer, debate_champion],
messages=[],
max_round=12,
speaker_selection_method="round_robin"
)
manager = autogen.GroupChatManager(groupchat=team, llm_config=llm_config)
boss_aid.initiate_chat(manager, debate_problem=DEBATE_PROBLEM, n_results=3)
def homeworkteam():
_reset_agents()
team = autogen.GroupChat(
agents=[boss_aid, academic_expert, pm, reviewer, academic_whiz],
messages=[],
max_round=12,
speaker_selection_method="round_robin"
)
manager = autogen.GroupChatManager(groupchat=team, llm_config=llm_config)
boss_aid.initiate_chat(manager, homework_problem=HOMEWORK_PROBLEM, n_results=3)
def consultingteam():
_reset_agents()
team = autogen.GroupChat(
agents=[boss_aid, consultant, pm, reviewer, consulting_pro],
messages=[],
max_round=12,
speaker_selection_method="round_robin"
)
manager = autogen.GroupChatManager(groupchat=team, llm_config=llm_config)
boss_aid.initiate_chat(manager, consulting_problem=CONSULTING_PROBLEM, n_results=3)
# Select and initiate team based on team mapping
team_function = {
"CodingTeam": codingteam,
"Covid19Team": covid19team,
"FinanceTeam": financeteam,
"DebateTeam": debateteam,
"HomeworkTeam": homeworkteam,
"ConsultingTeam": consultingteam
}
team_action = team_function.get(team, lambda: "No appropriate team found for the given input.")
return team_action()
def main():
with gr.Blocks() as demo:
gr.Markdown(title)
with gr.Row():
txt_oai_key = gr.Textbox(label="OpenAI API Key", type="password")
txt_pat = gr.Textbox(label="Clarifai PAT", type="password", placeholder="Enter Clarifai PAT here")
txt_query = gr.Textbox(label="Describe your problem in detail:")
txt_max_auto_reply = gr.Number(label="Max Auto Replies", value=50)
audio_input = gr.Audio(label="Or speak your problem here:", type="numpy",)
image_input = gr.Image(label="Or upload an image related to your problem:", type="numpy", )
btn_submit = gr.Button("Submit")
output = gr.Textbox(label="Output",)
def process_and_submit(oai_key, pat, query, max_auto_reply, audio, image):
os.environ['CLARIFAI_PAT'] = pat
os.environ['OAI_KEY'] = oai_key
if audio is not None:
query = process_audio_image_input("audio", audio, "asr-wav2vec2-base-960h-english")
elif image is not None:
query = process_audio_image_input("image", image, "general-english-image-caption-blip")
return process_query(oai_key, query, max_auto_reply)
btn_submit.click(
process_and_submit,
inputs=[txt_oai_key, txt_pat, txt_query, txt_max_auto_reply, audio_input, image_input],
outputs=output
)
demo.launch()
if __name__ == "__main__":
main()