import numpy as np from tensorflow import keras import tensorflow as tf def softmax(x): f_x = np.exp(x) / np.sum(np.exp(x)) return f_x def get_pred(img): map_label = {0: 'other', 1: 'crater', 2: 'dark dune', 3: 'slope streak', 4: 'bright dune', 5: 'swiss cheese' } model = keras.models.load_model('model/final.h5') img = tf.expand_dims(img, axis=0) img = tf.image.resize(img, [227, 227]) print(img) pred = model(img) pred = softmax(pred[0]) i = int(tf.math.argmax(pred)) return map_label[i], round(pred[i], 2)*100