import glob import json import os import os import torch from tqdm import tqdm import random def open_content(path): paths = glob.glob(os.path.join(path, "*.json")) train, dev, test, labels = None, None, None, None for p in paths: if "train" in p: with open(p, "r") as f: train = json.load(f) elif "dev" in p: with open(p, "r") as f: dev = json.load(f) elif "test" in p: with open(p, "r") as f: test = json.load(f) elif "labels" in p: with open(p, "r") as f: labels = json.load(f) return train, dev, test, labels def process(data): words = data['sentence'].split() entities = [] # List of entities (start, end, type) for entity in data['entities']: start_char, end_char = entity['pos'] # Initialize variables to keep track of word positions start_word = None end_word = None # Iterate through words and find the word positions char_count = 0 for i, word in enumerate(words): word_length = len(word) if char_count == start_char: start_word = i if char_count + word_length == end_char: end_word = i break char_count += word_length + 1 # Add 1 for the space # Append the word positions to the list entities.append((start_word, end_word, entity['type'])) # Create a list of word positions for each entity sample = { "tokenized_text": words, "ner": entities } return sample # create dataset def create_dataset(path): train, dev, test, labels = open_content(path) train_dataset = [] dev_dataset = [] test_dataset = [] for data in train: train_dataset.append(process(data)) for data in dev: dev_dataset.append(process(data)) for data in test: test_dataset.append(process(data)) return train_dataset, dev_dataset, test_dataset, labels @torch.no_grad() def get_for_one_path(path, model): # load the dataset _, _, test_dataset, entity_types = create_dataset(path) data_name = path.split("/")[-1] # get the name of the dataset # check if the dataset is flat_ner flat_ner = True if any([i in data_name for i in ["ACE", "GENIA", "Corpus"]]): flat_ner = False # evaluate the model results, f1 = model.evaluate(test_dataset, flat_ner=flat_ner, threshold=0.5, batch_size=12, entity_types=entity_types) return data_name, results, f1 def get_for_all_path(model, steps, log_dir, data_paths): all_paths = glob.glob(f"{data_paths}/*") all_paths = sorted(all_paths) # move the model to the device device = next(model.parameters()).device model.to(device) # set the model to eval mode model.eval() # log the results save_path = os.path.join(log_dir, "results.txt") with open(save_path, "a") as f: f.write("##############################################\n") # write step f.write("step: " + str(steps) + "\n") zero_shot_benc = ["mit-movie", "mit-restaurant", "CrossNER_AI", "CrossNER_literature", "CrossNER_music", "CrossNER_politics", "CrossNER_science"] zero_shot_benc_results = {} all_results = {} # without crossNER for p in tqdm(all_paths): if "sample_" not in p: data_name, results, f1 = get_for_one_path(p, model) # write to file with open(save_path, "a") as f: f.write(data_name + "\n") f.write(str(results) + "\n") if data_name in zero_shot_benc: zero_shot_benc_results[data_name] = f1 else: all_results[data_name] = f1 avg_all = sum(all_results.values()) / len(all_results) avg_zs = sum(zero_shot_benc_results.values()) / len(zero_shot_benc_results) save_path_table = os.path.join(log_dir, "tables.txt") # results for all datasets except crossNER table_bench_all = "" for k, v in all_results.items(): table_bench_all += f"{k:20}: {v:.1%}\n" # (20 size aswell for average i.e. :20) table_bench_all += f"{'Average':20}: {avg_all:.1%}" # results for zero-shot benchmark table_bench_zeroshot = "" for k, v in zero_shot_benc_results.items(): table_bench_zeroshot += f"{k:20}: {v:.1%}\n" table_bench_zeroshot += f"{'Average':20}: {avg_zs:.1%}" # write to file with open(save_path_table, "a") as f: f.write("##############################################\n") f.write("step: " + str(steps) + "\n") f.write("Table for all datasets except crossNER\n") f.write(table_bench_all + "\n\n") f.write("Table for zero-shot benchmark\n") f.write(table_bench_zeroshot + "\n") f.write("##############################################\n\n") def sample_train_data(data_paths, sample_size=10000): all_paths = glob.glob(f"{data_paths}/*") all_paths = sorted(all_paths) # to exclude the zero-shot benchmark datasets zero_shot_benc = ["CrossNER_AI", "CrossNER_literature", "CrossNER_music", "CrossNER_politics", "CrossNER_science", "ACE 2004"] new_train = [] # take 10k samples from each dataset for p in tqdm(all_paths): if any([i in p for i in zero_shot_benc]): continue train, dev, test, labels = create_dataset(p) # add label key to the train data for i in range(len(train)): train[i]["label"] = labels random.shuffle(train) train = train[:sample_size] new_train.extend(train) return new_train