Spaces:
Runtime error
Runtime error
# -*- coding: utf-8 -*- | |
""" | |
Author: Philipp Seidl | |
ELLIS Unit Linz, LIT AI Lab, Institute for Machine Learning | |
Johannes Kepler University Linz | |
Contact: seidl@ml.jku.at | |
Loading log-files from training | |
""" | |
from pathlib import Path | |
import os | |
import datetime | |
import pandas as pd | |
import numpy as np | |
import pandas as pd | |
import matplotlib.pyplot as plt | |
def load_experiments(EXP_DIR = Path('data/experiments/')): | |
dfs = [] | |
for fn in os.listdir(EXP_DIR): | |
print(fn, end='\r') | |
if fn.split('.')[-1]=='tsv': | |
df = pd.read_csv(EXP_DIR/fn, sep='\t', index_col=0) | |
try: | |
with open(df['fn_hist'][0]) as f: | |
hist = eval(f.readlines()[0] ) | |
df['hist'] = [hist] | |
df['fn'] = fn | |
except: | |
print('err') | |
#print(df['fn_hist']) | |
dfs.append( df ) | |
df = pd.concat(dfs,ignore_index=True) | |
return df | |
def get_x(k, kw, operation='max', index=None): | |
operation = getattr(np,operation) | |
try: | |
if index is not None: | |
return k[kw][index] | |
return operation(k[kw]) | |
except: | |
return 0 | |
def get_min_val_loss_idx(k): | |
return get_x(k, 'loss_valid', 'argmin') #changed from argmax to argmin!! | |
def get_tauc(hist): | |
idx = get_min_val_loss_idx(hist) | |
# takes max TODO take idx | |
return np.mean([get_x(hist, f't100_acc_nte_{nt}') for nt in [*range(11),'>10']]) | |
def get_stats_from_hist(df): | |
df['0shot_acc'] = df['hist'].apply(lambda k: get_x(k, 't100_acc_nte_0')) | |
df['1shot_acc'] = df['hist'].apply(lambda k: get_x(k, 't100_acc_nte_1')) | |
df['>49shot_acc'] = df['hist'].apply(lambda k: get_x(k, 't100_acc_nte_>49')) | |
df['min_loss_valid'] = df['hist'].apply(lambda k: get_x(k, 'loss_valid', 'min')) | |
return df |