import gradio as gr def greet(name): return "Hello " + name + "!!" iface = gr.Interface(fn=greet, inputs="text", outputs="text") iface.launch() ''' import gradio as gr import torch import torch.nn as nn import torchtext import spacy import string # 下载和加载情感分类模型 model = torch.hub.load('pytorch/vision', 'resnet18', pretrained=True) model.eval() # 创建一个文本处理pipeline nlp = spacy.load("en_core_web_sm") tokenizer = torchtext.data.utils.get_tokenizer("spacy", language="en_core_web_sm") def preprocess_text(text): text = text.lower() text = ''.join([char for char in text if char not in string.punctuation]) text = ' '.join([token.text for token in nlp(text)]) text = tokenizer(text) return ' '.join(text) # 定义文本情感分类函数 def classify_text(text): text = preprocess_text(text) # 在这里实际上应该用您自己的情感分类模型进行预测 # 此示例仅用ResNet-18模型进行占位 return {"emotion": "Placeholder"} # 创建Gradio界面 iface = gr.Interface( fn=classify_text, inputs="text", outputs="label", interpretation="default", title="Text Emotion Classification", description="Enter a text and get its emotion classification." ) # 启动界面 iface.launch() '''