import gradio as gr # from transformers import pipeline # from transformers.utils import logging from llama_index.core import VectorStoreIndex, SimpleDirectoryReader from llama_index.vector_stores.chroma import ChromaVectorStore from llama_index.core import StorageContext from llama_index.embeddings.huggingface import HuggingFaceEmbedding import torch from llama_index.core import VectorStoreIndex from llama_index.core import Document from llama_index.core import Settings from llama_index.llms.huggingface import ( HuggingFaceInferenceAPI, HuggingFaceLLM, ) from huggingface_hub import login import chromadb as chromadb from chromadb.utils import embedding_functions import shutil import os # last = 0 CHROMA_DATA_PATH = "chroma_data/" EMBED_MODEL = "BAAI/bge-m3" # all-MiniLM-L6-v2 CHUNK_SIZE = 800 CHUNK_OVERLAP = 50 max_results = 3 min_len = 40 min_distance = 0.35 max_distance = 0.6 temperature = 0.55 max_tokens=3072 top_p=0.8 frequency_penalty=0.0 presence_penalty=0.15 jezik = "srpski" system_sr = "Zoveš se U-Chat AI asistent i pomažeš korisniku usluga kompanije United Group. Korisnik postavlja pitanje ili problem, upareno sa dodatnima saznanjima. Na osnovu toga napiši korisniku kratak i ljubazan odgovor koji kompletira njegov zahtev ili mu daje odgovor na pitanje. " # " Ako ne znaš odgovor, reci da ne znaš, ne izmišljaj ga." system_sr += "Usluge kompanije United Group uključuju i kablovsku mrežu za digitalnu televiziju, pristup internetu, uređaj EON SMART BOX za TV sadržaj, kao i fiksnu telefoniju." chroma_client = chromadb.PersistentClient(CHROMA_DATA_PATH) embedding_func = embedding_functions.SentenceTransformerEmbeddingFunction( model_name=EMBED_MODEL ) collection = chroma_client.get_or_create_collection( name="chroma_data", embedding_function=embedding_func, metadata={"hnsw:space": "cosine"}, ) last = collection.count() # HF_TOKEN = "wncSKewozDfuZCXCyFbYbAMHgUrfcrumkc" # login(token=("hf_" + HF_TOKEN)) system_propmpt = system_sr # "facebook/blenderbot-400M-distill", facebook/blenderbot-400M-distill, stabilityai/stablelm-zephyr-3b, BAAI/bge-small-en-v1.5 Settings.llm = HuggingFaceInferenceAPI(model_name="mistralai/Mistral-Nemo-Instruct-2407", device_map="auto", system_prompt = system_propmpt, context_window=4096, max_new_tokens=256, # stopping_ids=[50278, 50279, 50277, 1, 0], generate_kwargs={"temperature": 0.5, "do_sample": False}, # tokenizer_kwargs={"max_length": 4096}, tokenizer_name="mistralai/Mistral-Nemo-Instruct-2407", ) # "BAAI/bge-m3" Settings.embed_model = HuggingFaceEmbedding(model_name="sentence-transformers/all-MiniLM-L6-v2") #documents = [Document(text="Indian parliament elections happened in April-May 2024. BJP Party won."), # Document(text="Indian parliament elections happened in April-May 2021. XYZ Party won."), # Document(text="Indian parliament elections happened in 2020. ABC Party won."), # ] #index = VectorStoreIndex.from_documents( # documents, #) vector_store = ChromaVectorStore(chroma_collection=collection) index = VectorStoreIndex.from_vector_store(vector_store, embed_model=Settings.embed_model) query_engine = index.as_query_engine() def rag(input_text, file): if (file): # documents = [] # for f in file: # documents += SimpleDirectoryReader(f).load_data() # f = file + "*.pdf" pathname = os.path.dirname # shutil.copyfile(file.name, path) print("pathname=", pathname) print("basename=", os.path.basename(file)) print("filename=", file.name) documents = SimpleDirectoryReader(file).load_data() index2 = VectorStoreIndex.from_documents(documents) query_engine = index2.as_query_engine() return query_engine.query(input_text) # collection.add( # documents=documents, # ids=[f"id{last+i}" for i in range(len(documents))], # metadatas=[{"state": "s0", "next": "s0", "used": False, "source": 'None', "page": -1, "lang": jezik } for i in range(len(documents)) ] # ) else: query_engine = index.as_query_engine() return query_engine.query(input_text) #iface = gr.Interface(fn=rag, inputs=[gr.Textbox(label="Pitanje:", lines=6), gr.File()], # outputs=[gr.Textbox(label="Odgovor:", lines=6)], # title="Kako Vam mogu pomoći?", # description= "UChat" # ) def upload_file(filepath): name = Path(filepath).name documents = SimpleDirectoryReader(file).load_data() index = VectorStoreIndex.from_documents(documents) query_engine = index.as_query_engine() return filepath with gr.Blocks() as iface: gr.Markdown("Uchat") file_out = gr.File() with gr.Row(): with gr.Column(scale=1): inp = gr.Textbox(label="Pitanje:", lines=6) u = gr.UploadButton("Upload a file", file_count="single") with gr.Column(scale=1): out = gr.Textbox(label="Odgovor:", lines=6) sub = gr.Button(label="Pokreni") u.upload(upload_file, u, file_out) sub.click(rag, inp, out) iface.launch()