import torch import torch.nn as nn import torch.nn.functional as F def compute_tri_normal(geometry, tris): tri_1 = tris[:, 0] tri_2 = tris[:, 1] tri_3 = tris[:, 2] vert_1 = torch.index_select(geometry, 1, tri_1) vert_2 = torch.index_select(geometry, 1, tri_2) vert_3 = torch.index_select(geometry, 1, tri_3) nnorm = torch.cross(vert_2 - vert_1, vert_3 - vert_1, 2) normal = nn.functional.normalize(nnorm) return normal def euler2rot(euler_angle): batch_size = euler_angle.shape[0] theta = euler_angle[:, 0].reshape(-1, 1, 1) phi = euler_angle[:, 1].reshape(-1, 1, 1) psi = euler_angle[:, 2].reshape(-1, 1, 1) one = torch.ones(batch_size, 1, 1).to(euler_angle.device) zero = torch.zeros(batch_size, 1, 1).to(euler_angle.device) rot_x = torch.cat( ( torch.cat((one, zero, zero), 1), torch.cat((zero, theta.cos(), theta.sin()), 1), torch.cat((zero, -theta.sin(), theta.cos()), 1), ), 2, ) rot_y = torch.cat( ( torch.cat((phi.cos(), zero, -phi.sin()), 1), torch.cat((zero, one, zero), 1), torch.cat((phi.sin(), zero, phi.cos()), 1), ), 2, ) rot_z = torch.cat( ( torch.cat((psi.cos(), -psi.sin(), zero), 1), torch.cat((psi.sin(), psi.cos(), zero), 1), torch.cat((zero, zero, one), 1), ), 2, ) return torch.bmm(rot_x, torch.bmm(rot_y, rot_z)) def rot_trans_pts(geometry, rot, trans): rott_geo = torch.bmm(rot, geometry.permute(0, 2, 1)) + trans[:, :, None] return rott_geo.permute(0, 2, 1) def cal_lap_loss(tensor_list, weight_list): lap_kernel = ( torch.Tensor((-0.5, 1.0, -0.5)) .unsqueeze(0) .unsqueeze(0) .float() .to(tensor_list[0].device) ) loss_lap = 0 for i in range(len(tensor_list)): in_tensor = tensor_list[i] in_tensor = in_tensor.view(-1, 1, in_tensor.shape[-1]) out_tensor = F.conv1d(in_tensor, lap_kernel) loss_lap += torch.mean(out_tensor ** 2) * weight_list[i] return loss_lap def proj_pts(rott_geo, focal_length, cxy): cx, cy = cxy[0], cxy[1] X = rott_geo[:, :, 0] Y = rott_geo[:, :, 1] Z = rott_geo[:, :, 2] fxX = focal_length * X fyY = focal_length * Y proj_x = -fxX / Z + cx proj_y = fyY / Z + cy return torch.cat((proj_x[:, :, None], proj_y[:, :, None], Z[:, :, None]), 2) def forward_rott(geometry, euler_angle, trans): rot = euler2rot(euler_angle) rott_geo = rot_trans_pts(geometry, rot, trans) return rott_geo def forward_transform(geometry, euler_angle, trans, focal_length, cxy): rot = euler2rot(euler_angle) rott_geo = rot_trans_pts(geometry, rot, trans) proj_geo = proj_pts(rott_geo, focal_length, cxy) return proj_geo def cal_lan_loss(proj_lan, gt_lan): return torch.mean((proj_lan - gt_lan) ** 2) def cal_col_loss(pred_img, gt_img, img_mask): pred_img = pred_img.float() # loss = torch.sqrt(torch.sum(torch.square(pred_img - gt_img), 3))*img_mask/255 loss = (torch.sum(torch.square(pred_img - gt_img), 3)) * img_mask / 255 loss = torch.sum(loss, dim=(1, 2)) / torch.sum(img_mask, dim=(1, 2)) loss = torch.mean(loss) return loss