Spaces:
Runtime error
Runtime error
# from: https://gradio.app/real_time_speech_recognition/ | |
from transformers import pipeline, Wav2Vec2CTCTokenizer, Wav2Vec2ForCTC, Wav2Vec2ProcessorWithLM | |
import torch | |
import pyctcdecode | |
import kenlm | |
import gradio as gr | |
import librosa | |
import os | |
import time | |
#Loading the model and the tokenizer | |
token_key = os.environ.get("HUGGING_FACE_HUB_TOKEN") | |
#model_name = "unilux/wav2vec-xls-r-Luxembourgish20-with-LM" | |
model_name = "unilux/wav2vec-xlsr-300m-Luxembourgish-with-LM" | |
tokenizer = Wav2Vec2CTCTokenizer.from_pretrained(model_name, use_auth_token=token_key) | |
model = Wav2Vec2ForCTC.from_pretrained(model_name, use_auth_token=token_key) | |
processor = Wav2Vec2ProcessorWithLM.from_pretrained(model_name, use_auth_token=token_key) | |
device = "cuda" if torch.cuda.is_available() else "cpu" | |
model = model.to(device) | |
p = pipeline("automatic-speech-recognition", model=model, tokenizer=tokenizer, feature_extractor=processor.feature_extractor, decoder=processor.decoder, use_auth_token=token_key) | |
#p = pipeline("automatic-speech-recognition", model=model_name, use_auth_token = token_key) | |
#p = pipeline("automatic-speech-recognition", model=model_name, use_auth_token = True) | |
#tokenizer = Wav2Vec2Tokenizer.from_pretrained(model_name) | |
#model = Wav2Vec2ForCTC.from_pretrained(model_name) | |
def load_data(input_file): | |
""" Function for resampling to ensure that the speech input is sampled at 16KHz. | |
""" | |
sampling_rate = 16_000 | |
#read the file | |
speech, sample_rate = librosa.load(input_file, sr=sampling_rate, mono=True) | |
speech = librosa.effects.trim(speech, top_db= 10) | |
return speech[0] | |
def asr_pipe(input_file): | |
load_data(input_file) | |
transcription = p(input_file, chunk_length_s=3, stride_length_s=(1, 1))["text"] | |
return transcription | |
gr.Interface(asr_pipe, | |
inputs = gr.inputs.Audio(source="microphone", type="filepath", optional=True, label="Hei kënnt Dir Är Sprooch iwwert de Mikro ophuelen"), | |
outputs = gr.outputs.Textbox(label="Erkannten Text"), | |
title="Sproocherkennung fir d'Lëtzebuergescht @uni.lu", | |
description = "Dës App convertéiert Är geschwate Sprooch an de (méi oder manner richtegen ;-)) Text!", | |
examples = [["ChamberMeisch.wav"], ["Chamber_Fayot_2005.wav"], ["Erlieft-a-Verzielt.wav"], ["Schnessen_Beispill.wav"]], theme="default").launch() | |