import librosa from transformers import Wav2Vec2ForCTC, AutoProcessor import torch import logging # Set up logging logging.basicConfig(level=logging.DEBUG) ASR_SAMPLING_RATE = 16_000 MODEL_ID = "facebook/wav2vec2-large-960h-lv60-self" try: processor = AutoProcessor.from_pretrained(MODEL_ID) model = Wav2Vec2ForCTC.from_pretrained(MODEL_ID) logging.info("ASR model and processor loaded successfully.") except Exception as e: logging.error(f"Error loading ASR model or processor: {e}") def transcribe(audio): try: if audio is None: logging.error("No audio file provided") return "ERROR: You have to either use the microphone or upload an audio file" logging.info(f"Loading audio file: {audio}") audio_samples, _ = librosa.load(audio, sr=ASR_SAMPLING_RATE, mono=True) inputs = processor(audio_samples, sampling_rate=ASR_SAMPLING_RATE, return_tensors="pt") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) inputs = inputs.to(device) with torch.no_grad(): outputs = model(**inputs).logits ids = torch.argmax(outputs, dim=-1)[0] transcription = processor.decode(ids) logging.info("Transcription completed successfully.") return transcription except Exception as e: logging.error(f"Error during transcription: {e}") return "ERROR"