import torch import torch.nn as nn import math from .timm import trunc_normal_, DropPath, Mlp import einops import torch.utils.checkpoint import torch.nn.functional as F if hasattr(torch.nn.functional, 'scaled_dot_product_attention'): ATTENTION_MODE = 'flash' else: try: import xformers import xformers.ops ATTENTION_MODE = 'xformers' except: ATTENTION_MODE = 'math' print(f'attention mode is {ATTENTION_MODE}') def timestep_embedding(timesteps, dim, max_period=10000): """ Create sinusoidal timestep embeddings. :param timesteps: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an [N x dim] Tensor of positional embeddings. """ half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half ).to(device=timesteps.device) args = timesteps[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) return embedding def patchify(imgs, patch_size): x = einops.rearrange(imgs, 'B C (h p1) (w p2) -> B (h w) (p1 p2 C)', p1=patch_size, p2=patch_size) return x def unpatchify(x, in_chans): patch_size = int((x.shape[2] // in_chans) ** 0.5) h = w = int(x.shape[1] ** .5) assert h * w == x.shape[1] and patch_size ** 2 * in_chans == x.shape[2] x = einops.rearrange(x, 'B (h w) (p1 p2 C) -> B C (h p1) (w p2)', h=h, p1=patch_size, p2=patch_size) return x def interpolate_pos_emb(pos_emb, old_shape, new_shape): pos_emb = einops.rearrange(pos_emb, 'B (H W) C -> B C H W', H=old_shape[0], W=old_shape[1]) pos_emb = F.interpolate(pos_emb, new_shape, mode='bilinear') pos_emb = einops.rearrange(pos_emb, 'B C H W -> B (H W) C') return pos_emb class Attention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0.): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.attn_drop = nn.Dropout(attn_drop) self.proj = nn.Linear(dim, dim) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x): B, L, C = x.shape qkv = self.qkv(x) if ATTENTION_MODE == 'flash': qkv = einops.rearrange(qkv, 'B L (K H D) -> K B H L D', K=3, H=self.num_heads).float() q, k, v = qkv[0], qkv[1], qkv[2] # B H L D x = torch.nn.functional.scaled_dot_product_attention(q, k, v) x = einops.rearrange(x, 'B H L D -> B L (H D)') elif ATTENTION_MODE == 'xformers': qkv = einops.rearrange(qkv, 'B L (K H D) -> K B L H D', K=3, H=self.num_heads) q, k, v = qkv[0], qkv[1], qkv[2] # B L H D x = xformers.ops.memory_efficient_attention(q, k, v) x = einops.rearrange(x, 'B L H D -> B L (H D)', H=self.num_heads) elif ATTENTION_MODE == 'math': with torch.amp.autocast(device_type='cuda', enabled=False): qkv = einops.rearrange(qkv, 'B L (K H D) -> K B H L D', K=3, H=self.num_heads).float() q, k, v = qkv[0], qkv[1], qkv[2] # B H L D attn = (q @ k.transpose(-2, -1)) * self.scale attn = attn.softmax(dim=-1) attn = self.attn_drop(attn) x = (attn @ v).transpose(1, 2).reshape(B, L, C) else: raise NotImplemented x = self.proj(x) x = self.proj_drop(x) return x class Block(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, skip=False, use_checkpoint=False): super().__init__() self.norm1 = norm_layer(dim) if skip else None self.norm2 = norm_layer(dim) self.attn = Attention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm3 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.skip_linear = nn.Linear(2 * dim, dim) if skip else None self.use_checkpoint = use_checkpoint def forward(self, x, skip=None): if self.use_checkpoint: return torch.utils.checkpoint.checkpoint(self._forward, x, skip) else: return self._forward(x, skip) def _forward(self, x, skip=None): if self.skip_linear is not None: x = self.skip_linear(torch.cat([x, skip], dim=-1)) x = self.norm1(x) x = x + self.drop_path(self.attn(x)) x = self.norm2(x) x = x + self.drop_path(self.mlp(x)) x = self.norm3(x) return x class PatchEmbed(nn.Module): """ Image to Patch Embedding """ def __init__(self, patch_size, in_chans=3, embed_dim=768): super().__init__() self.patch_size = patch_size self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x): B, C, H, W = x.shape assert H % self.patch_size == 0 and W % self.patch_size == 0 x = self.proj(x).flatten(2).transpose(1, 2) return x class UViT(nn.Module): def __init__(self, img_size, in_chans, patch_size, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=False, qk_scale=None, pos_drop_rate=0., drop_rate=0., attn_drop_rate=0., norm_layer=nn.LayerNorm, mlp_time_embed=False, use_checkpoint=False, text_dim=None, num_text_tokens=None, clip_img_dim=None): super().__init__() self.in_chans = in_chans self.patch_size = patch_size self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.patch_embed = PatchEmbed(patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) self.img_size = (img_size, img_size) if isinstance(img_size, int) else img_size # the default img size assert self.img_size[0] % patch_size == 0 and self.img_size[1] % patch_size == 0 self.num_patches = (self.img_size[0] // patch_size) * (self.img_size[1] // patch_size) self.time_img_embed = nn.Sequential( nn.Linear(embed_dim, 4 * embed_dim), nn.SiLU(), nn.Linear(4 * embed_dim, embed_dim), ) if mlp_time_embed else nn.Identity() self.time_text_embed = nn.Sequential( nn.Linear(embed_dim, 4 * embed_dim), nn.SiLU(), nn.Linear(4 * embed_dim, embed_dim), ) if mlp_time_embed else nn.Identity() self.text_embed = nn.Linear(text_dim, embed_dim) self.text_out = nn.Linear(embed_dim, text_dim) self.clip_img_embed = nn.Linear(clip_img_dim, embed_dim) self.clip_img_out = nn.Linear(embed_dim, clip_img_dim) self.num_text_tokens = num_text_tokens self.num_tokens = 1 + 1 + num_text_tokens + 1 + self.num_patches self.pos_embed = nn.Parameter(torch.zeros(1, self.num_tokens, embed_dim)) self.pos_drop = nn.Dropout(p=pos_drop_rate) self.in_blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer, use_checkpoint=use_checkpoint) for _ in range(depth // 2)]) self.mid_block = Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer, use_checkpoint=use_checkpoint) self.out_blocks = nn.ModuleList([ Block( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, norm_layer=norm_layer, skip=True, use_checkpoint=use_checkpoint) for _ in range(depth // 2)]) self.norm = norm_layer(embed_dim) self.patch_dim = patch_size ** 2 * in_chans self.decoder_pred = nn.Linear(embed_dim, self.patch_dim, bias=True) trunc_normal_(self.pos_embed, std=.02) self.apply(self._init_weights) self.token_embedding = nn.Embedding(2, embed_dim) self.pos_embed_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) def _init_weights(self, m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed'} def forward(self, img, clip_img, text, t_img, t_text, data_type): _, _, H, W = img.shape img = self.patch_embed(img) t_img_token = self.time_img_embed(timestep_embedding(t_img, self.embed_dim)) t_img_token = t_img_token.unsqueeze(dim=1) t_text_token = self.time_text_embed(timestep_embedding(t_text, self.embed_dim)) t_text_token = t_text_token.unsqueeze(dim=1) text = self.text_embed(text) clip_img = self.clip_img_embed(clip_img) token_embed = self.token_embedding(data_type).unsqueeze(dim=1) x = torch.cat((t_img_token, t_text_token, token_embed, text, clip_img, img), dim=1) num_text_tokens, num_img_tokens = text.size(1), img.size(1) pos_embed = torch.cat( [self.pos_embed[:, :1 + 1, :], self.pos_embed_token, self.pos_embed[:, 1 + 1:, :]], dim=1) if H == self.img_size[0] and W == self.img_size[1]: pass else: # interpolate the positional embedding when the input image is not of the default shape pos_embed_others, pos_embed_patches = torch.split(pos_embed, [1 + 1 + 1 + num_text_tokens + 1, self.num_patches], dim=1) pos_embed_patches = interpolate_pos_emb(pos_embed_patches, (self.img_size[0] // self.patch_size, self.img_size[1] // self.patch_size), (H // self.patch_size, W // self.patch_size)) pos_embed = torch.cat((pos_embed_others, pos_embed_patches), dim=1) x = x + pos_embed x = self.pos_drop(x) skips = [] for blk in self.in_blocks: x = blk(x) skips.append(x) x = self.mid_block(x) for blk in self.out_blocks: x = blk(x, skips.pop()) x = self.norm(x) t_img_token_out, t_text_token_out, token_embed_out, text_out, clip_img_out, img_out = x.split((1, 1, 1, num_text_tokens, 1, num_img_tokens), dim=1) img_out = self.decoder_pred(img_out) img_out = unpatchify(img_out, self.in_chans) clip_img_out = self.clip_img_out(clip_img_out) text_out = self.text_out(text_out) return img_out, clip_img_out, text_out