import torch import torch.nn.functional as F import math import numpy as np import torch.distributed as dist def interpolate_fn(x: torch.Tensor, xp: torch.Tensor, yp: torch.Tensor) -> torch.Tensor: """Performs piecewise linear interpolation for x, using xp and yp keypoints (knots). Performs separate interpolation for each channel. Args: x: [N, C] points to be calibrated (interpolated). Batch with C channels. xp: [C, K] x coordinates of the PWL knots. C is the number of channels, K is the number of knots. yp: [C, K] y coordinates of the PWL knots. C is the number of channels, K is the number of knots. Returns: Interpolated points of the shape [N, C]. The piecewise linear function extends for the whole x axis (the outermost keypoints define the outermost infinite lines). For example: >>> calibrate1d(torch.tensor([[0.5]]), torch.tensor([[0.0, 1.0]]), torch.tensor([[0.0, 2.0]])) tensor([[1.0000]]) >>> calibrate1d(torch.tensor([[-10]]), torch.tensor([[0.0, 1.0]]), torch.tensor([[0.0, 2.0]])) tensor([[-20.0000]]) """ x_breakpoints = torch.cat([x.unsqueeze(2), xp.unsqueeze(0).repeat((x.shape[0], 1, 1))], dim=2) num_x_points = xp.shape[1] sorted_x_breakpoints, x_indices = torch.sort(x_breakpoints, dim=2) x_idx = torch.argmin(x_indices, dim=2) cand_start_idx = x_idx - 1 start_idx = torch.where( torch.eq(x_idx, 0), torch.tensor(1, device=x.device), torch.where( torch.eq(x_idx, num_x_points), torch.tensor(num_x_points - 2, device=x.device), cand_start_idx, ), ) end_idx = torch.where(torch.eq(start_idx, cand_start_idx), start_idx + 2, start_idx + 1) start_x = torch.gather(sorted_x_breakpoints, dim=2, index=start_idx.unsqueeze(2)).squeeze(2) end_x = torch.gather(sorted_x_breakpoints, dim=2, index=end_idx.unsqueeze(2)).squeeze(2) start_idx2 = torch.where( torch.eq(x_idx, 0), torch.tensor(0, device=x.device), torch.where( torch.eq(x_idx, num_x_points), torch.tensor(num_x_points - 2, device=x.device), cand_start_idx, ), ) y_positions_expanded = yp.unsqueeze(0).expand(x.shape[0], -1, -1) start_y = torch.gather(y_positions_expanded, dim=2, index=start_idx2.unsqueeze(2)).squeeze(2) end_y = torch.gather(y_positions_expanded, dim=2, index=(start_idx2 + 1).unsqueeze(2)).squeeze(2) cand = start_y + (x - start_x) * (end_y - start_y) / (end_x - start_x) return cand class NoiseScheduleVP: def __init__(self, schedule='discrete', beta_0=1e-4, beta_1=2e-2, total_N=1000, betas=None, alphas_cumprod=None): """Create a wrapper class for the forward SDE (VP type). The forward SDE ensures that the condition distribution q_{t|0}(x_t | x_0) = N ( alpha_t * x_0, sigma_t^2 * I ). We further define lambda_t = log(alpha_t) - log(sigma_t), which is the half-logSNR (described in the DPM-Solver paper). Therefore, we implement the functions for computing alpha_t, sigma_t and lambda_t. For t in [0, T], we have: log_alpha_t = self.marginal_log_mean_coeff(t) sigma_t = self.marginal_std(t) lambda_t = self.marginal_lambda(t) Moreover, as lambda(t) is an invertible function, we also support its inverse function: t = self.inverse_lambda(lambda_t) =============================================================== We support two types of VPSDEs: linear (DDPM) and cosine (improved-DDPM). The hyperparameters for the noise schedule are the default settings in DDPM and improved-DDPM: beta_min: A `float` number. The smallest beta for the linear schedule. beta_max: A `float` number. The largest beta for the linear schedule. cosine_s: A `float` number. The hyperparameter in the cosine schedule. cosine_beta_max: A `float` number. The hyperparameter in the cosine schedule. T: A `float` number. The ending time of the forward process. Note that the original DDPM (linear schedule) used the discrete-time label (0 to 999). We convert the discrete-time label to the continuous-time time (followed Song et al., 2021), so the beta here is 1000x larger than those in DDPM. =============================================================== Args: schedule: A `str`. The noise schedule of the forward SDE ('linear' or 'cosine'). Returns: A wrapper object of the forward SDE (VP type). """ if schedule not in ['linear', 'discrete', 'cosine']: raise ValueError("Unsupported noise schedule {}. The schedule needs to be 'linear' or 'cosine'".format(schedule)) self.total_N = total_N self.beta_0 = beta_0 * 1000. self.beta_1 = beta_1 * 1000. if schedule == 'discrete': if betas is not None: log_alphas = 0.5 * torch.log(1 - betas).cumsum(dim=0) else: assert alphas_cumprod is not None log_alphas = 0.5 * torch.log(alphas_cumprod) self.total_N = len(log_alphas) self.t_discrete = torch.linspace(1. / self.total_N, 1., self.total_N).reshape((1, -1)) self.log_alpha_discrete = log_alphas.reshape((1, -1)) self.cosine_s = 0.008 self.cosine_beta_max = 999. self.cosine_t_max = math.atan(self.cosine_beta_max * (1. + self.cosine_s) / math.pi) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s self.cosine_log_alpha_0 = math.log(math.cos(self.cosine_s / (1. + self.cosine_s) * math.pi / 2.)) self.schedule = schedule if schedule == 'cosine': # For the cosine schedule, T = 1 will have numerical issues. So we manually set the ending time T. # Note that T = 0.9946 may be not the optimal setting. However, we find it works well. self.T = 0.9946 else: self.T = 1. def marginal_log_mean_coeff(self, t): """ Compute log(alpha_t) of a given continuous-time label t in [0, T]. """ if self.schedule == 'linear': return -0.25 * t ** 2 * (self.beta_1 - self.beta_0) - 0.5 * t * self.beta_0 elif self.schedule == 'discrete': return interpolate_fn(t.reshape((-1, 1)), self.t_discrete.clone().to(t.device), self.log_alpha_discrete.clone().to(t.device)).reshape((-1,)) elif self.schedule == 'cosine': log_alpha_fn = lambda s: torch.log(torch.cos((s + self.cosine_s) / (1. + self.cosine_s) * math.pi / 2.)) log_alpha_t = log_alpha_fn(t) - self.cosine_log_alpha_0 return log_alpha_t else: raise ValueError("Unsupported ") def marginal_alpha(self, t): return torch.exp(self.marginal_log_mean_coeff(t)) def marginal_std(self, t): """ Compute sigma_t of a given continuous-time label t in [0, T]. """ return torch.sqrt(1. - torch.exp(2. * self.marginal_log_mean_coeff(t))) def marginal_lambda(self, t): """ Compute lambda_t = log(alpha_t) - log(sigma_t) of a given continuous-time label t in [0, T]. """ log_mean_coeff = self.marginal_log_mean_coeff(t) log_std = 0.5 * torch.log(1. - torch.exp(2. * log_mean_coeff)) return log_mean_coeff - log_std def inverse_lambda(self, lamb): """ Compute the continuous-time label t in [0, T] of a given half-logSNR lambda_t. """ if self.schedule == 'linear': tmp = 2. * (self.beta_1 - self.beta_0) * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb)) Delta = self.beta_0**2 + tmp return tmp / (torch.sqrt(Delta) + self.beta_0) / (self.beta_1 - self.beta_0) elif self.schedule == 'discrete': log_alpha = -0.5 * torch.logaddexp(torch.zeros((1,)).to(lamb.device), -2. * lamb) t = interpolate_fn(log_alpha.reshape((-1, 1)), torch.flip(self.log_alpha_discrete.clone().to(lamb.device), [1]), torch.flip(self.t_discrete.clone().to(lamb.device), [1])) return t.reshape((-1,)) else: log_alpha = -0.5 * torch.logaddexp(-2. * lamb, torch.zeros((1,)).to(lamb)) t_fn = lambda log_alpha_t: torch.arccos(torch.exp(log_alpha_t + self.cosine_log_alpha_0)) * 2. * (1. + self.cosine_s) / math.pi - self.cosine_s t = t_fn(log_alpha) return t def model_wrapper(model, noise_schedule=None, is_cond_classifier=False, classifier_fn=None, classifier_scale=1., time_input_type='1', total_N=1000, model_kwargs={}, is_deis=False): """Create a wrapper function for the noise prediction model. DPM-Solver needs to solve the continuous-time diffusion ODEs. For DPMs trained on discrete-time labels, we need to firstly wrap the model function to a function that accepts the continuous time as the input. The input `model` has the following format: `` model(x, t_input, **model_kwargs) -> noise `` where `x` and `noise` have the same shape, and `t_input` is the time label of the model. (may be discrete-time labels (i.e. 0 to 999) or continuous-time labels (i.e. epsilon to T).) We wrap the model function to the following format: `` def model_fn(x, t_continuous) -> noise: t_input = get_model_input_time(t_continuous) return model(x, t_input, **model_kwargs) `` where `t_continuous` is the continuous time labels (i.e. epsilon to T). And we use `model_fn` for DPM-Solver. For DPMs with classifier guidance, we also combine the model output with the classifier gradient as used in [1]. [1] P. Dhariwal and A. Q. Nichol, "Diffusion models beat GANs on image synthesis," in Advances in Neural Information Processing Systems, vol. 34, 2021, pp. 8780-8794. =============================================================== Args: model: A noise prediction model with the following format: `` def model(x, t_input, **model_kwargs): return noise `` noise_schedule: A noise schedule object, such as NoiseScheduleVP. Only used for the classifier guidance. is_cond_classifier: A `bool`. Whether to use the classifier guidance. classifier_fn: A classifier function. Only used for the classifier guidance. The format is: `` def classifier_fn(x, t_input): return logits `` classifier_scale: A `float`. The scale for the classifier guidance. time_input_type: A `str`. The type for the time input of the model. We support three types: - '0': The continuous-time type. In this case, the model is trained on the continuous time, so `t_input` = `t_continuous`. - '1': The Type-1 discrete type described in the Appendix of DPM-Solver paper. **For discrete-time DPMs, we recommend to use this type for DPM-Solver**. - '2': The Type-2 discrete type described in the Appendix of DPM-Solver paper. total_N: A `int`. The total number of the discrete-time DPMs (default is 1000), used when `time_input_type` is '1' or '2'. model_kwargs: A `dict`. A dict for the other inputs of the model function. Returns: A function that accepts the continuous time as the input, with the following format: `` def model_fn(x, t_continuous): t_input = get_model_input_time(t_continuous) return model(x, t_input, **model_kwargs) `` """ def get_model_input_time(t_continuous): """ Convert the continuous-time `t_continuous` (in [epsilon, T]) to the model input time. """ if time_input_type == '0': # discrete_type == '0' means that the model is continuous-time model. # For continuous-time DPMs, the continuous time equals to the discrete time. return t_continuous elif time_input_type == '1': # Type-1 discrete label, as detailed in the Appendix of DPM-Solver. return 1000. * torch.max(t_continuous - 1. / total_N, torch.zeros_like(t_continuous).to(t_continuous)) elif time_input_type == '2': # Type-2 discrete label, as detailed in the Appendix of DPM-Solver. max_N = (total_N - 1) / total_N * 1000. return max_N * t_continuous else: raise ValueError("Unsupported time input type {}, must be '0' or '1' or '2'".format(time_input_type)) def cond_fn(x, t_discrete, y): """ Compute the gradient of the classifier, multiplied with the sclae of the classifier guidance. """ assert y is not None with torch.enable_grad(): x_in = x.detach().requires_grad_(True) logits = classifier_fn(x_in, t_discrete) log_probs = F.log_softmax(logits, dim=-1) selected = log_probs[range(len(logits)), y.view(-1)] return classifier_scale * torch.autograd.grad(selected.sum(), x_in)[0] def model_fn(x, t_continuous): """ The noise predicition model function that is used for DPM-Solver. """ if t_continuous.reshape((-1,)).shape[0] == 1: t_continuous = torch.ones((x.shape[0],)).to(x.device) * t_continuous if is_cond_classifier: y = model_kwargs.get("y", None) if y is None: raise ValueError("For classifier guidance, the label y has to be in the input.") t_discrete = get_model_input_time(t_continuous) noise_uncond = model(x, t_discrete, **model_kwargs) cond_grad = cond_fn(x, t_discrete, y) if is_deis: sigma_t = noise_schedule.marginal_std(t_continuous / 1000.) else: sigma_t = noise_schedule.marginal_std(t_continuous) dims = len(cond_grad.shape) - 1 return noise_uncond - sigma_t[(...,) + (None,)*dims] * cond_grad else: t_discrete = get_model_input_time(t_continuous) return model(x, t_discrete, **model_kwargs) return model_fn class DPM_Solver: def __init__(self, model_fn, noise_schedule, predict_x0=False, thresholding=False, max_val=1.): """Construct a DPM-Solver. Args: model_fn: A noise prediction model function which accepts the continuous-time input (t in [epsilon, T]): `` def model_fn(x, t_continuous): return noise `` noise_schedule: A noise schedule object, such as NoiseScheduleVP. """ self.model = model_fn self.noise_schedule = noise_schedule self.predict_x0 = predict_x0 self.thresholding = thresholding self.max_val = max_val def model_fn(self, x, t): if self.predict_x0: alpha_t, sigma_t = self.noise_schedule.marginal_alpha(t), self.noise_schedule.marginal_std(t) noise = self.model(x, t) dims = len(x.shape) - 1 x0 = (x - sigma_t[(...,) + (None,)*dims] * noise) / alpha_t[(...,) + (None,)*dims] if self.thresholding: p = 0.995 s = torch.quantile(torch.abs(x0).reshape((x0.shape[0], -1)), p, dim=1) s = torch.maximum(s, torch.ones_like(s).to(s.device))[(...,) + (None,)*dims] x0 = torch.clamp(x0, -s, s) / (s / self.max_val) return x0 else: return self.model(x, t) def get_time_steps(self, skip_type, t_T, t_0, N, device): """Compute the intermediate time steps for sampling. Args: skip_type: A `str`. The type for the spacing of the time steps. We support three types: - 'logSNR': uniform logSNR for the time steps, **recommended for DPM-Solver**. - 'time_uniform': uniform time for the time steps. (Used in DDIM and DDPM.) - 'time_quadratic': quadratic time for the time steps. (Used in DDIM for low-resolutional data.) t_T: A `float`. The starting time of the sampling (default is T). t_0: A `float`. The ending time of the sampling (default is epsilon). N: A `int`. The total number of the spacing of the time steps. device: A torch device. Returns: A pytorch tensor of the time steps, with the shape (N + 1,). """ if skip_type == 'logSNR': lambda_T = self.noise_schedule.marginal_lambda(torch.tensor(t_T).to(device)) lambda_0 = self.noise_schedule.marginal_lambda(torch.tensor(t_0).to(device)) logSNR_steps = torch.linspace(lambda_T.cpu().item(), lambda_0.cpu().item(), N + 1).to(device) # print(torch.min(torch.abs(logSNR_steps - self.noise_schedule.marginal_lambda(self.noise_schedule.inverse_lambda(logSNR_steps)))).item()) return self.noise_schedule.inverse_lambda(logSNR_steps) elif skip_type == 't2': t_order = 2 t = torch.linspace(t_T**(1. / t_order), t_0**(1. / t_order), N + 1).pow(t_order).to(device) return t elif skip_type == 'time_uniform': return torch.linspace(t_T, t_0, N + 1).to(device) elif skip_type == 'time_quadratic': t = torch.linspace(t_0, t_T, 10000000).to(device) quadratic_t = torch.sqrt(t) quadratic_steps = torch.linspace(quadratic_t[0], quadratic_t[-1], N + 1).to(device) return torch.flip(torch.cat([t[torch.searchsorted(quadratic_t, quadratic_steps)[:-1]], t_T * torch.ones((1,)).to(device)], dim=0), dims=[0]) else: raise ValueError("Unsupported skip_type {}, need to be 'logSNR' or 'time_uniform' or 'time_quadratic'".format(skip_type)) def get_time_steps_for_dpm_solver_fast(self, skip_type, t_T, t_0, steps, order, device): """ Compute the intermediate time steps and the order of each step for sampling by DPM-Solver-fast. We recommend DPM-Solver-fast for fast sampling of DPMs. Given a fixed number of function evaluations by `steps`, the sampling procedure by DPM-Solver-fast is: - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling. - If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1. - If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1. - If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2. ============================================ Args: t_T: A `float`. The starting time of the sampling (default is T). t_0: A `float`. The ending time of the sampling (default is epsilon). steps: A `int`. The total number of function evaluations (NFE). device: A torch device. Returns: orders: A list of the solver order of each step. timesteps: A pytorch tensor of the time steps, with the shape of (K + 1,). """ if order == 3: K = steps // 3 + 1 if steps % 3 == 0: orders = [3,] * (K - 2) + [2, 1] elif steps % 3 == 1: orders = [3,] * (K - 1) + [1] else: orders = [3,] * (K - 1) + [2] timesteps = self.get_time_steps(skip_type, t_T, t_0, K, device) return orders, timesteps elif order == 2: K = steps // 2 if steps % 2 == 0: orders = [2,] * K else: orders = [2,] * K + [1] timesteps = self.get_time_steps(skip_type, t_T, t_0, K, device) return orders, timesteps else: raise ValueError("order must >= 2") def denoise_fn(self, x, s, noise_s=None): ns = self.noise_schedule dims = len(x.shape) - 1 log_alpha_s = ns.marginal_log_mean_coeff(s) sigma_s = ns.marginal_std(s) if noise_s is None: noise_s = self.model_fn(x, s) x_0 = ( (x - sigma_s[(...,) + (None,)*dims] * noise_s) / torch.exp(log_alpha_s)[(...,) + (None,)*dims] ) return x_0 def dpm_solver_first_update(self, x, s, t, noise_s=None, return_noise=False): """ A single step for DPM-Solver-1. Args: x: A pytorch tensor. The initial value at time `s`. s: A pytorch tensor. The starting time, with the shape (x.shape[0],). t: A pytorch tensor. The ending time, with the shape (x.shape[0],). return_noise: A `bool`. If true, also return the predicted noise at time `s`. Returns: x_t: A pytorch tensor. The approximated solution at time `t`. """ ns = self.noise_schedule dims = len(x.shape) - 1 lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t) h = lambda_t - lambda_s log_alpha_s, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(t) sigma_s, sigma_t = ns.marginal_std(s), ns.marginal_std(t) alpha_t = torch.exp(log_alpha_t) if self.predict_x0: phi_1 = (torch.exp(-h) - 1.) / (-1.) if noise_s is None: noise_s = self.model_fn(x, s) x_t = ( (sigma_t / sigma_s)[(...,) + (None,)*dims] * x + (alpha_t * phi_1)[(...,) + (None,)*dims] * noise_s ) if return_noise: return x_t, {'noise_s': noise_s} else: return x_t else: phi_1 = torch.expm1(h) if noise_s is None: noise_s = self.model_fn(x, s) x_t = ( torch.exp(log_alpha_t - log_alpha_s)[(...,) + (None,)*dims] * x - (sigma_t * phi_1)[(...,) + (None,)*dims] * noise_s ) if return_noise: return x_t, {'noise_s': noise_s} else: return x_t def dpm_solver_second_update(self, x, s, t, r1=0.5, noise_s=None, return_noise=False, solver_type='dpm_solver'): """ A single step for DPM-Solver-2. Args: x: A pytorch tensor. The initial value at time `s`. s: A pytorch tensor. The starting time, with the shape (x.shape[0],). t: A pytorch tensor. The ending time, with the shape (x.shape[0],). r1: A `float`. The hyperparameter of the second-order solver. We recommend the default setting `0.5`. noise_s: A pytorch tensor. The predicted noise at time `s`. If `noise_s` is None, we compute the predicted noise by `x` and `s`; otherwise we directly use it. return_noise: A `bool`. If true, also return the predicted noise at time `s` and `s1` (the intermediate time). Returns: x_t: A pytorch tensor. The approximated solution at time `t`. """ if r1 is None: r1 = 0.5 ns = self.noise_schedule dims = len(x.shape) - 1 lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t) h = lambda_t - lambda_s lambda_s1 = lambda_s + r1 * h s1 = ns.inverse_lambda(lambda_s1) log_alpha_s, log_alpha_s1, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(t) sigma_s, sigma_s1, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(t) alpha_s1, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_t) if self.predict_x0: phi_11 = torch.expm1(-r1 * h) phi_1 = torch.expm1(-h) if noise_s is None: noise_s = self.model_fn(x, s) x_s1 = ( (sigma_s1 / sigma_s)[(...,) + (None,)*dims] * x - (alpha_s1 * phi_11)[(...,) + (None,)*dims] * noise_s ) noise_s1 = self.model_fn(x_s1, s1) if solver_type == 'dpm_solver': x_t = ( (sigma_t / sigma_s)[(...,) + (None,)*dims] * x - (alpha_t * phi_1)[(...,) + (None,)*dims] * noise_s - (0.5 / r1) * (alpha_t * phi_1)[(...,) + (None,)*dims] * (noise_s1 - noise_s) ) elif solver_type == 'taylor': x_t = ( (sigma_t / sigma_s)[(...,) + (None,)*dims] * x - (alpha_t * phi_1)[(...,) + (None,)*dims] * noise_s + (1. / r1) * (alpha_t * ((torch.exp(-h) - 1.) / h + 1.))[(...,) + (None,)*dims] * (noise_s1 - noise_s) ) else: raise ValueError("solver_type must be either dpm_solver or taylor, got {}".format(solver_type)) else: phi_11 = torch.expm1(r1 * h) phi_1 = torch.expm1(h) if noise_s is None: noise_s = self.model_fn(x, s) x_s1 = ( torch.exp(log_alpha_s1 - log_alpha_s)[(...,) + (None,)*dims] * x - (sigma_s1 * phi_11)[(...,) + (None,)*dims] * noise_s ) noise_s1 = self.model_fn(x_s1, s1) if solver_type == 'dpm_solver': x_t = ( torch.exp(log_alpha_t - log_alpha_s)[(...,) + (None,)*dims] * x - (sigma_t * phi_1)[(...,) + (None,)*dims] * noise_s - (0.5 / r1) * (sigma_t * phi_1)[(...,) + (None,)*dims] * (noise_s1 - noise_s) ) elif solver_type == 'taylor': x_t = ( torch.exp(log_alpha_t - log_alpha_s)[(...,) + (None,)*dims] * x - (sigma_t * phi_1)[(...,) + (None,)*dims] * noise_s - (1. / r1) * (sigma_t * ((torch.exp(h) - 1.) / h - 1.))[(...,) + (None,)*dims] * (noise_s1 - noise_s) ) else: raise ValueError("solver_type must be either dpm_solver or taylor, got {}".format(solver_type)) if return_noise: return x_t, {'noise_s': noise_s, 'noise_s1': noise_s1} else: return x_t def dpm_multistep_second_update(self, x, noise_prev_list, t_prev_list, t, solver_type="dpm_solver"): ns = self.noise_schedule dims = len(x.shape) - 1 noise_prev_1, noise_prev_0 = noise_prev_list t_prev_1, t_prev_0 = t_prev_list lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t) log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t) sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t) alpha_t = torch.exp(log_alpha_t) h_0 = lambda_prev_0 - lambda_prev_1 h = lambda_t - lambda_prev_0 r0 = h_0 / h D1_0 = (1. / r0)[(...,) + (None,)*dims] * (noise_prev_0 - noise_prev_1) if self.predict_x0: if solver_type == 'taylor': x_t = ( (sigma_t / sigma_prev_0)[(...,) + (None,)*dims] * x - (alpha_t * (torch.exp(-h) - 1.))[(...,) + (None,)*dims] * noise_prev_0 + (alpha_t * ((torch.exp(-h) - 1.) / h + 1.))[(...,) + (None,)*dims] * D1_0 ) elif solver_type == 'dpm_solver': x_t = ( (sigma_t / sigma_prev_0)[(...,) + (None,)*dims] * x - (alpha_t * (torch.exp(-h) - 1.))[(...,) + (None,)*dims] * noise_prev_0 - 0.5 * (alpha_t * (torch.exp(-h) - 1.))[(...,) + (None,)*dims] * D1_0 ) else: if solver_type == 'taylor': x_t = ( torch.exp(log_alpha_t - log_alpha_prev_0)[(...,) + (None,)*dims] * x - (sigma_t * (torch.exp(h) - 1.))[(...,) + (None,)*dims] * noise_prev_0 - (sigma_t * ((torch.exp(h) - 1.) / h - 1.))[(...,) + (None,)*dims] * D1_0 ) elif solver_type == 'dpm_solver': x_t = ( torch.exp(log_alpha_t - log_alpha_prev_0)[(...,) + (None,)*dims] * x - (sigma_t * (torch.exp(h) - 1.))[(...,) + (None,)*dims] * noise_prev_0 - 0.5 * (sigma_t * (torch.exp(h) - 1.))[(...,) + (None,)*dims] * D1_0 ) return x_t def dpm_multistep_third_update(self, x, noise_prev_list, t_prev_list, t, solver_type='dpm_solver'): ns = self.noise_schedule dims = len(x.shape) - 1 noise_prev_2, noise_prev_1, noise_prev_0 = noise_prev_list t_prev_2, t_prev_1, t_prev_0 = t_prev_list lambda_prev_2, lambda_prev_1, lambda_prev_0, lambda_t = ns.marginal_lambda(t_prev_2), ns.marginal_lambda(t_prev_1), ns.marginal_lambda(t_prev_0), ns.marginal_lambda(t) log_alpha_prev_0, log_alpha_t = ns.marginal_log_mean_coeff(t_prev_0), ns.marginal_log_mean_coeff(t) sigma_prev_0, sigma_t = ns.marginal_std(t_prev_0), ns.marginal_std(t) alpha_t = torch.exp(log_alpha_t) h_1 = lambda_prev_1 - lambda_prev_2 h_0 = lambda_prev_0 - lambda_prev_1 h = lambda_t - lambda_prev_0 r0, r1 = h_0 / h, h_1 / h D1_0 = (1. / r0)[(...,) + (None,)*dims] * (noise_prev_0 - noise_prev_1) D1_1 = (1. / r1)[(...,) + (None,)*dims] * (noise_prev_1 - noise_prev_2) D1 = D1_0 + (r0 / (r0 + r1))[(...,) + (None,)*dims] * (D1_0 - D1_1) D2 = (1. / (r0 + r1))[(...,) + (None,)*dims] * (D1_0 - D1_1) if self.predict_x0: x_t = ( (sigma_t / sigma_prev_0)[(...,) + (None,)*dims] * x - (alpha_t * (torch.exp(-h) - 1.))[(...,) + (None,)*dims] * noise_prev_0 + (alpha_t * ((torch.exp(-h) - 1.) / h + 1.))[(...,) + (None,)*dims] * D1 - (alpha_t * ((torch.exp(-h) - 1. + h) / h**2 - 0.5))[(...,) + (None,)*dims] * D2 ) else: x_t = ( torch.exp(log_alpha_t - log_alpha_prev_0)[(...,) + (None,)*dims] * x - (sigma_t * (torch.exp(h) - 1.))[(...,) + (None,)*dims] * noise_prev_0 - (sigma_t * ((torch.exp(h) - 1.) / h - 1.))[(...,) + (None,)*dims] * D1 - (sigma_t * ((torch.exp(h) - 1. - h) / h**2 - 0.5))[(...,) + (None,)*dims] * D2 ) return x_t def dpm_solver_third_update(self, x, s, t, r1=1./3., r2=2./3., noise_s=None, noise_s1=None, noise_s2=None, return_noise=False, solver_type='dpm_solver'): """ A single step for DPM-Solver-3. Args: x: A pytorch tensor. The initial value at time `s`. s: A pytorch tensor. The starting time, with the shape (x.shape[0],). t: A pytorch tensor. The ending time, with the shape (x.shape[0],). r1: A `float`. The hyperparameter of the third-order solver. We recommend the default setting `1 / 3`. r2: A `float`. The hyperparameter of the third-order solver. We recommend the default setting `2 / 3`. noise_s: A pytorch tensor. The predicted noise at time `s`. If `noise_s` is None, we compute the predicted noise by `x` and `s`; otherwise we directly use it. noise_s1: A pytorch tensor. The predicted noise at time `s1` (the intermediate time given by `r1`). If `noise_s1` is None, we compute the predicted noise by `s1`; otherwise we directly use it. Returns: x_t: A pytorch tensor. The approximated solution at time `t`. """ if r1 is None: r1 = 1. / 3. if r2 is None: r2 = 2. / 3. ns = self.noise_schedule dims = len(x.shape) - 1 lambda_s, lambda_t = ns.marginal_lambda(s), ns.marginal_lambda(t) h = lambda_t - lambda_s lambda_s1 = lambda_s + r1 * h lambda_s2 = lambda_s + r2 * h s1 = ns.inverse_lambda(lambda_s1) s2 = ns.inverse_lambda(lambda_s2) log_alpha_s, log_alpha_s1, log_alpha_s2, log_alpha_t = ns.marginal_log_mean_coeff(s), ns.marginal_log_mean_coeff(s1), ns.marginal_log_mean_coeff(s2), ns.marginal_log_mean_coeff(t) sigma_s, sigma_s1, sigma_s2, sigma_t = ns.marginal_std(s), ns.marginal_std(s1), ns.marginal_std(s2), ns.marginal_std(t) alpha_s1, alpha_s2, alpha_t = torch.exp(log_alpha_s1), torch.exp(log_alpha_s2), torch.exp(log_alpha_t) if self.predict_x0: phi_11 = torch.expm1(-r1 * h) phi_12 = torch.expm1(-r2 * h) phi_1 = torch.expm1(-h) phi_22 = torch.expm1(-r2 * h) / (r2 * h) + 1. phi_2 = phi_1 / h + 1. phi_3 = phi_2 / h - 0.5 if noise_s is None: noise_s = self.model_fn(x, s) if noise_s1 is None: x_s1 = ( (sigma_s1 / sigma_s)[(...,) + (None,)*dims] * x - (alpha_s1 * phi_11)[(...,) + (None,)*dims] * noise_s ) noise_s1 = self.model_fn(x_s1, s1) if noise_s2 is None: x_s2 = ( (sigma_s2 / sigma_s)[(...,) + (None,)*dims] * x - (alpha_s2 * phi_12)[(...,) + (None,)*dims] * noise_s + r2 / r1 * (alpha_s2 * phi_22)[(...,) + (None,)*dims] * (noise_s1 - noise_s) ) noise_s2 = self.model_fn(x_s2, s2) if solver_type == 'dpm_solver': x_t = ( (sigma_t / sigma_s)[(...,) + (None,)*dims] * x - (alpha_t * phi_1)[(...,) + (None,)*dims] * noise_s + (1. / r2) * (alpha_t * phi_2)[(...,) + (None,)*dims] * (noise_s2 - noise_s) ) elif solver_type == 'taylor': D1_0 = (1. / r1) * (noise_s1 - noise_s) D1_1 = (1. / r2) * (noise_s2 - noise_s) D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1) D2 = 2. * (D1_1 - D1_0) / (r2 - r1) x_t = ( (sigma_t / sigma_s)[(...,) + (None,)*dims] * x - (alpha_t * phi_1)[(...,) + (None,)*dims] * noise_s + (alpha_t * phi_2)[(...,) + (None,)*dims] * D1 - (alpha_t * phi_3)[(...,) + (None,)*dims] * D2 ) else: raise ValueError("solver_type must be either dpm_solver or dpm_solver++, got {}".format(solver_type)) else: phi_11 = torch.expm1(r1 * h) phi_12 = torch.expm1(r2 * h) phi_1 = torch.expm1(h) phi_22 = torch.expm1(r2 * h) / (r2 * h) - 1. phi_2 = phi_1 / h - 1. phi_3 = phi_2 / h - 0.5 if noise_s is None: noise_s = self.model_fn(x, s) if noise_s1 is None: x_s1 = ( torch.exp(log_alpha_s1 - log_alpha_s)[(...,) + (None,)*dims] * x - (sigma_s1 * phi_11)[(...,) + (None,)*dims] * noise_s ) noise_s1 = self.model_fn(x_s1, s1) if noise_s2 is None: x_s2 = ( torch.exp(log_alpha_s2 - log_alpha_s)[(...,) + (None,)*dims] * x - (sigma_s2 * phi_12)[(...,) + (None,)*dims] * noise_s - r2 / r1 * (sigma_s2 * phi_22)[(...,) + (None,)*dims] * (noise_s1 - noise_s) ) noise_s2 = self.model_fn(x_s2, s2) if solver_type == 'dpm_solver': x_t = ( torch.exp(log_alpha_t - log_alpha_s)[(...,) + (None,)*dims] * x - (sigma_t * phi_1)[(...,) + (None,)*dims] * noise_s - (1. / r2) * (sigma_t * phi_2)[(...,) + (None,)*dims] * (noise_s2 - noise_s) ) elif solver_type == 'taylor': D1_0 = (1. / r1) * (noise_s1 - noise_s) D1_1 = (1. / r2) * (noise_s2 - noise_s) D1 = (r2 * D1_0 - r1 * D1_1) / (r2 - r1) D2 = 2. * (D1_1 - D1_0) / (r2 - r1) x_t = ( torch.exp(log_alpha_t - log_alpha_s)[(...,) + (None,)*dims] * x - (sigma_t * phi_1)[(...,) + (None,)*dims] * noise_s - (sigma_t * phi_2)[(...,) + (None,)*dims] * D1 - (sigma_t * phi_3)[(...,) + (None,)*dims] * D2 ) else: raise ValueError("solver_type must be either dpm_solver or dpm_solver++, got {}".format(solver_type)) if return_noise: return x_t, {'noise_s': noise_s, 'noise_s1': noise_s1, 'noise_s2': noise_s2} else: return x_t def dpm_solver_update(self, x, s, t, order, return_noise=False, solver_type='dpm_solver', r1=None, r2=None): """ A single step for DPM-Solver of the given order `order`. Args: x: A pytorch tensor. The initial value at time `s`. s: A pytorch tensor. The starting time, with the shape (x.shape[0],). t: A pytorch tensor. The ending time, with the shape (x.shape[0],). order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3. Returns: x_t: A pytorch tensor. The approximated solution at time `t`. """ if order == 1: return self.dpm_solver_first_update(x, s, t, return_noise=return_noise) elif order == 2: return self.dpm_solver_second_update(x, s, t, return_noise=return_noise, solver_type=solver_type, r1=r1) elif order == 3: return self.dpm_solver_third_update(x, s, t, return_noise=return_noise, solver_type=solver_type, r1=r1, r2=r2) else: raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order)) def dpm_multistep_update(self, x, noise_prev_list, t_prev_list, t, order, solver_type='taylor'): """ A single step for DPM-Solver of the given order `order`. Args: x: A pytorch tensor. The initial value at time `s`. s: A pytorch tensor. The starting time, with the shape (x.shape[0],). t: A pytorch tensor. The ending time, with the shape (x.shape[0],). order: A `int`. The order of DPM-Solver. We only support order == 1 or 2 or 3. Returns: x_t: A pytorch tensor. The approximated solution at time `t`. """ if order == 1: return self.dpm_solver_first_update(x, t_prev_list[-1], t, noise_s=noise_prev_list[-1]) elif order == 2: return self.dpm_multistep_second_update(x, noise_prev_list, t_prev_list, t, solver_type=solver_type) elif order == 3: return self.dpm_multistep_third_update(x, noise_prev_list, t_prev_list, t, solver_type=solver_type) else: raise ValueError("Solver order must be 1 or 2 or 3, got {}".format(order)) def dpm_solver_adaptive(self, x, order, t_T, t_0, h_init=0.05, atol=0.0078, rtol=0.05, theta=0.9, t_err=1e-5, solver_type='dpm_solver'): """ The adaptive step size solver based on DPM-Solver. Args: x: A pytorch tensor. The initial value at time `t_T`. order: A `int`. The (higher) order of the solver. We only support order == 2 or 3. t_T: A `float`. The starting time of the sampling (default is T). t_0: A `float`. The ending time of the sampling (default is epsilon). h_init: A `float`. The initial step size (for logSNR). atol: A `float`. The absolute tolerance of the solver. For image data, the default setting is 0.0078, followed [1]. rtol: A `float`. The relative tolerance of the solver. The default setting is 0.05. theta: A `float`. The safety hyperparameter for adapting the step size. The default setting is 0.9, followed [1]. t_err: A `float`. The tolerance for the time. We solve the diffusion ODE until the absolute error between the current time and `t_0` is less than `t_err`. The default setting is 1e-5. Returns: x_0: A pytorch tensor. The approximated solution at time `t_0`. [1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021. """ ns = self.noise_schedule s = t_T * torch.ones((x.shape[0],)).to(x) lambda_s = ns.marginal_lambda(s) lambda_0 = ns.marginal_lambda(t_0 * torch.ones_like(s).to(x)) h = h_init * torch.ones_like(s).to(x) x_prev = x nfe = 0 if order == 2: r1 = 0.5 lower_update = lambda x, s, t: self.dpm_solver_first_update(x, s, t, return_noise=True) higher_update = lambda x, s, t, **kwargs: self.dpm_solver_second_update(x, s, t, r1=r1, solver_type=solver_type, **kwargs) elif order == 3: r1, r2 = 1. / 3., 2. / 3. lower_update = lambda x, s, t: self.dpm_solver_second_update(x, s, t, r1=r1, return_noise=True, solver_type=solver_type) higher_update = lambda x, s, t, **kwargs: self.dpm_solver_third_update(x, s, t, r1=r1, r2=r2, solver_type=solver_type, **kwargs) else: raise ValueError("For adaptive step size solver, order must be 2 or 3, got {}".format(order)) while torch.abs((s - t_0)).mean() > t_err: t = ns.inverse_lambda(lambda_s + h) x_lower, lower_noise_kwargs = lower_update(x, s, t) x_higher = higher_update(x, s, t, **lower_noise_kwargs) delta = torch.max(torch.ones_like(x).to(x) * atol, rtol * torch.max(torch.abs(x_lower), torch.abs(x_prev))) norm_fn = lambda v: torch.sqrt(torch.square(v.reshape((v.shape[0], -1))).mean(dim=-1, keepdim=True)) E = norm_fn((x_higher - x_lower) / delta).max() if torch.all(E <= 1.): x = x_higher s = t x_prev = x_lower lambda_s = ns.marginal_lambda(s) h = torch.min(theta * h * torch.float_power(E, -1. / order).float(), lambda_0 - lambda_s) nfe += order print('adaptive solver nfe', nfe) return x def sample(self, x, steps=10, eps=1e-4, T=None, order=3, skip_type='time_uniform', denoise=False, method='fast', solver_type='dpm_solver', atol=0.0078, rtol=0.05, ): """ Compute the sample at time `eps` by DPM-Solver, given the initial `x` at time `T`. We support the following algorithms: - Adaptive step size DPM-Solver (i.e. DPM-Solver-12 and DPM-Solver-23) - Fixed order DPM-Solver (i.e. DPM-Solver-1, DPM-Solver-2 and DPM-Solver-3). - Fast version of DPM-Solver (i.e. DPM-Solver-fast), which uses uniform logSNR steps and combine different orders of DPM-Solver. **We recommend DPM-Solver-fast for both fast sampling in few steps (<=20) and fast convergence in many steps (50 to 100).** Choosing the algorithms: - If `adaptive_step_size` is True: We ignore `steps` and use adaptive step size DPM-Solver with a higher order of `order`. If `order`=2, we use DPM-Solver-12 which combines DPM-Solver-1 and DPM-Solver-2. If `order`=3, we use DPM-Solver-23 which combines DPM-Solver-2 and DPM-Solver-3. You can adjust the absolute tolerance `atol` and the relative tolerance `rtol` to balance the computatation costs (NFE) and the sample quality. - If `adaptive_step_size` is False and `fast_version` is True: We ignore `order` and use DPM-Solver-fast with number of function evaluations (NFE) = `steps`. We ignore `skip_type` and use uniform logSNR steps for DPM-Solver-fast. Given a fixed NFE=`steps`, the sampling procedure by DPM-Solver-fast is: - Denote K = (steps // 3 + 1). We take K intermediate time steps for sampling. - If steps % 3 == 0, we use (K - 2) steps of DPM-Solver-3, and 1 step of DPM-Solver-2 and 1 step of DPM-Solver-1. - If steps % 3 == 1, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-1. - If steps % 3 == 2, we use (K - 1) steps of DPM-Solver-3 and 1 step of DPM-Solver-2. - If `adaptive_step_size` is False and `fast_version` is False: We use DPM-Solver-`order` for `order`=1 or 2 or 3, with total [`steps` // `order`] * `order` NFE. We support three types of `skip_type`: - 'logSNR': uniform logSNR for the time steps, **recommended for DPM-Solver**. - 'time_uniform': uniform time for the time steps. (Used in DDIM and DDPM.) - 'time_quadratic': quadratic time for the time steps. (Used in DDIM.) ===================================================== Args: x: A pytorch tensor. The initial value at time `T` (a sample from the normal distribution). steps: A `int`. The total number of function evaluations (NFE). eps: A `float`. The ending time of the sampling. We recommend `eps`=1e-3 when `steps` <= 15; and `eps`=1e-4 when `steps` > 15. T: A `float`. The starting time of the sampling. Default is `None`. If `T` is None, we use self.noise_schedule.T. order: A `int`. The order of DPM-Solver. skip_type: A `str`. The type for the spacing of the time steps. Default is 'logSNR'. adaptive_step_size: A `bool`. If true, use the adaptive step size DPM-Solver. fast_version: A `bool`. If true, use DPM-Solver-fast (recommended). atol: A `float`. The absolute tolerance of the adaptive step size solver. rtol: A `float`. The relative tolerance of the adaptive step size solver. Returns: x_0: A pytorch tensor. The approximated solution at time `t_0`. [1] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and I. Mitliagkas, "Gotta go fast when generating data with score-based models," arXiv preprint arXiv:2105.14080, 2021. """ t_0 = eps t_T = self.noise_schedule.T if T is None else T device = x.device if method == 'adaptive': with torch.no_grad(): x = self.dpm_solver_adaptive(x, order=order, t_T=t_T, t_0=t_0, atol=atol, rtol=rtol, solver_type=solver_type) elif method == 'multistep': assert steps >= order if timesteps is None: timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device) assert timesteps.shape[0] - 1 == steps with torch.no_grad(): vec_t = timesteps[0].expand((x.shape[0])) noise_prev_list = [self.model_fn(x, vec_t)] t_prev_list = [vec_t] for init_order in range(1, order): vec_t = timesteps[init_order].expand(x.shape[0]) x = self.dpm_multistep_update(x, noise_prev_list, t_prev_list, vec_t, init_order, solver_type=solver_type) noise_prev_list.append(self.model_fn(x, vec_t)) t_prev_list.append(vec_t) for step in range(order, steps + 1): vec_t = timesteps[step].expand(x.shape[0]) x = self.dpm_multistep_update(x, noise_prev_list, t_prev_list, vec_t, order, solver_type=solver_type) for i in range(order - 1): t_prev_list[i] = t_prev_list[i + 1] noise_prev_list[i] = noise_prev_list[i + 1] t_prev_list[-1] = vec_t if step < steps: noise_prev_list[-1] = self.model_fn(x, vec_t) elif method == 'fast': orders, _ = self.get_time_steps_for_dpm_solver_fast(skip_type=skip_type, t_T=t_T, t_0=t_0, steps=steps, order=order, device=device) timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device) with torch.no_grad(): i = 0 for order in orders: vec_s, vec_t = torch.ones((x.shape[0],)).to(device) * timesteps[i], torch.ones((x.shape[0],)).to(device) * timesteps[i + order] h = self.noise_schedule.marginal_lambda(timesteps[i + order]) - self.noise_schedule.marginal_lambda(timesteps[i]) r1 = None if order <= 1 else (self.noise_schedule.marginal_lambda(timesteps[i + 1]) - self.noise_schedule.marginal_lambda(timesteps[i])) / h r2 = None if order <= 2 else (self.noise_schedule.marginal_lambda(timesteps[i + 2]) - self.noise_schedule.marginal_lambda(timesteps[i])) / h x = self.dpm_solver_update(x, vec_s, vec_t, order, solver_type=solver_type, r1=r1, r2=r2) i += order elif method == 'singlestep': N_steps = steps // order orders = [order,] * N_steps timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=N_steps, device=device) assert len(timesteps) - 1 == N_steps with torch.no_grad(): for i, order in enumerate(orders): vec_s, vec_t = torch.ones((x.shape[0],)).to(device) * timesteps[i], torch.ones((x.shape[0],)).to(device) * timesteps[i + 1] x = self.dpm_solver_update(x, vec_s, vec_t, order, solver_type=solver_type) if denoise: x = self.denoise_fn(x, torch.ones((x.shape[0],)).to(device) * t_0) return x