import gradio as gr import cv2 import numpy as np import os from PIL import Image import spaces import torch import torch.nn.functional as F from torchvision.transforms import Compose, Normalize import tempfile from gradio_imageslider import ImageSlider import matplotlib.pyplot as plt from iebins.networks.NewCRFDepth import NewCRFDepth from iebins.util.transfrom import Resize, NormalizeImage, PrepareForNet from iebins.utils import post_process_depth, flip_lr css = """ #img-display-container { max-height: 100vh; } #img-display-input { max-height: 80vh; } #img-display-output { max-height: 80vh; } """ DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' model = NewCRFDepth(version='large07', inv_depth=False, max_depth=10, pretrained=None).to(DEVICE).eval() model.train() num_params = sum([np.prod(p.size()) for p in model.parameters()]) print("== Total number of parameters: {}".format(num_params)) num_params_update = sum([np.prod(p.shape) for p in model.parameters() if p.requires_grad]) print("== Total number of learning parameters: {}".format(num_params_update)) model = torch.nn.DataParallel(model) checkpoint = torch.load('checkpoints/nyu_L.pth', map_location=torch.device(DEVICE)) model.load_state_dict(checkpoint['model']) print("== Loaded checkpoint '{}'".format('checkpoints/nyu_L.pth')) title = "# IEBins: Iterative Elastic Bins for Monocular Depth Estimation" description = """Demo for **IEBins: Iterative Elastic Bins for Monocular Depth Estimation**. Please refer to the [paper](https://arxiv.org/abs/2309.14137), [github](https://github.com/ShuweiShao/IEBins), or [poster](https://nips.cc/media/PosterPDFs/NeurIPS%202023/70695.png?t=1701662442.5228624) for more details.""" transform = Compose([ Resize( width=518, height=518, resize_target=False, keep_aspect_ratio=True, ensure_multiple_of=14, resize_method='lower_bound', image_interpolation_method=cv2.INTER_CUBIC, ), NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), PrepareForNet(), ]) @spaces.GPU @torch.no_grad() def predict_depth(model, image): return model(image) with gr.Blocks(css=css) as demo: gr.Markdown(title) gr.Markdown(description) with gr.Row(): input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input') depth_image_slider = ImageSlider( label="Depth Map with Slider View", elem_id='img-display-output', position=0.5,) raw_file = gr.File(label="Download Depth Map") submit = gr.Button("Submit") def on_submit(image): original_image = image.copy() # Resize the image if it is larger than 640x480 max_width, max_height = 640, 480 h, w = image.shape[:2] if w > max_width or h > max_height: scaling_factor = min(max_width / w, max_height / h) image = cv2.resize(image, None, fx=scaling_factor, fy=scaling_factor, interpolation=cv2.INTER_AREA) # Normalize the image image = np.asarray(image, dtype=np.float32) / 255.0 image = torch.from_numpy(image.transpose((2, 0, 1))) image = Normalize(mean=[0.485, 0.456, 0.406], std=[ 0.229, 0.224, 0.225])(image) with torch.no_grad(): image = torch.autograd.Variable(image.unsqueeze(0)) print("== Processing image") pred_depths_r_list, _, _ = model(image) image_flipped = flip_lr(image) pred_depths_r_list_flipped, _, _ = model(image_flipped) pred_depth = post_process_depth( pred_depths_r_list[-1], pred_depths_r_list_flipped[-1]) print("== Finished processing image") # Convert the PyTorch tensor to a NumPy array and squeeze pred_depth = pred_depth.cpu().numpy().squeeze() # Continue with your file saving operations tmp = tempfile.NamedTemporaryFile(suffix='.png', delete=False) plt.imsave(tmp.name, pred_depth, cmap='jet') return [(original_image, tmp.name), tmp.name] submit.click(on_submit, inputs=[input_image], outputs=[ depth_image_slider, raw_file]) example_files = os.listdir('examples') example_files.sort() example_files = [os.path.join('examples', filename) for filename in example_files] examples = gr.Examples(examples=example_files, inputs=[input_image], outputs=[ depth_image_slider, raw_file], fn=on_submit, cache_examples=False) if __name__ == '__main__': demo.queue().launch()