import gradio as gr import string from fastai.text.all import * #loading the model from pretrained weights model = load_learner('emot.pkl') labels = ['sadnesss','joy','love','anger','fear','surprise'] def make_prediction(text): #text preprocessing tr = str.maketrans('','',string.punctuation) text=text.translate(tr).lower() #making prediction by passing to model choice,pos,preds= model.predict(text) return {labels[i]:float(preds[i]) for i in range(len(labels))} title = 'Emotional assist' description = 'A haphazard tool for the critically inept, god forbid you actually need one of these in the future' examples =['Hello Everyone!','How are you today','fine, thank you!','Oh my God!'] enable_queue=True demo = gr.Interface(fn=make_prediction,inputs='text',outputs=gr.Label()) demo.launch()