r""" This module is a collection of *factories* for creating objects of datasets, models, optimizers and other useful components. For example, a ResNet-50 visual backbone can be created as: .. code-block:: python >>> # Explicitly by name, args and kwargs: >>> backbone = VisualBackboneFactory.create( ... "torchvision::resnet50", pretrained=False ... ) >>> # Directly from a config object: >>> _C = Config(override_list=["MODEL.VISUAL.NAME", "torchvision::resnet50"]) >>> backbone = VisualBackboneFactory.from_config(_C) Creating directly from :class:`~virtex.config.Config` is fast and simple, and ensures minimal changes throughout the codebase upon any change in the call signature of underlying class; or config hierarchy. Refer description of specific factories for more details. """ import re from functools import partial from typing import Any, Callable, Dict, Iterable, List import albumentations as alb from torch import nn, optim import virtex.data as vdata import virtex.models as vmodels import virtex.utils.distributed as dist from virtex.config import Config from virtex.data import transforms as T from virtex.data.tokenizers import SentencePieceBPETokenizer from virtex.modules import visual_backbones, textual_heads from virtex.optim import Lookahead, lr_scheduler from virtex.utils.beam_search import AutoRegressiveBeamSearch from virtex.utils.nucleus_sampling import AutoRegressiveNucleusSampling class Factory(object): r""" Base class for all factories. All factories must inherit this base class and follow these guidelines for a consistent behavior: * Factory objects cannot be instantiated, doing ``factory = SomeFactory()`` is illegal. Child classes should not implement ``__init__`` methods. * All factories must have an attribute named ``PRODUCTS`` of type ``Dict[str, Callable]``, which associates each class with a unique string name which can be used to create it. * All factories must implement one classmethod, :meth:`from_config` which contains logic for creating an object directly by taking name and other arguments directly from :class:`~virtex.config.Config`. They can use :meth:`create` already implemented in this base class. * :meth:`from_config` should not use too many extra arguments than the config itself, unless necessary (such as model parameters for optimizer). """ PRODUCTS: Dict[str, Callable] = {} def __init__(self): raise ValueError( f"""Cannot instantiate {self.__class__.__name__} object, use `create` classmethod to create a product from this factory. """ ) @classmethod def create(cls, name: str, *args, **kwargs) -> Any: r"""Create an object by its name, args and kwargs.""" if name not in cls.PRODUCTS: raise KeyError(f"{cls.__class__.__name__} cannot create {name}.") return cls.PRODUCTS[name](*args, **kwargs) @classmethod def from_config(cls, config: Config) -> Any: r"""Create an object directly from config.""" raise NotImplementedError class TokenizerFactory(Factory): r""" Factory to create text tokenizers. This codebase ony supports one tokenizer for now, but having a dedicated factory makes it easy to add more if needed. Possible choices: ``{"SentencePieceBPETokenizer"}``. """ PRODUCTS: Dict[str, Callable] = { "SentencePieceBPETokenizer": SentencePieceBPETokenizer } @classmethod def from_config(cls, config: Config) -> SentencePieceBPETokenizer: r""" Create a tokenizer directly from config. Parameters ---------- config: virtex.config.Config Config object with all the parameters. """ _C = config tokenizer = cls.create( "SentencePieceBPETokenizer", model_path=_C.DATA.TOKENIZER_MODEL ) return tokenizer class ImageTransformsFactory(Factory): r""" Factory to create image transformations for common preprocessing and data augmentations. These are a mix of default transformations from `albumentations `_ and some extended ones defined in :mod:`virtex.data.transforms`. It uses sensible default values, however they can be provided with the name in dict syntax. Example: ``random_resized_crop::{'scale': (0.08, 1.0)}`` .. note:: This factory does not implement :meth:`from_config` method. It is only used by :class:`PretrainingDatasetFactory` and :class:`DownstreamDatasetFactory`. Possible choices: ``{"center_crop", "horizontal_flip", "random_resized_crop", "normalize", "global_resize", "color_jitter", "smallest_resize"}``. """ # fmt: off PRODUCTS: Dict[str, Callable] = { # Input resize transforms: whenever selected, these are always applied. # These transforms require one position argument: image dimension. "random_resized_crop": partial( T.RandomResizedSquareCrop, scale=(0.2, 1.0), ratio=(0.75, 1.333), p=1.0 ), "center_crop": partial(T.CenterSquareCrop, p=1.0), "smallest_resize": partial(alb.SmallestMaxSize, p=1.0), "global_resize": partial(T.SquareResize, p=1.0), # Keep hue limits small in color jitter because it changes color drastically # and captions often mention colors. Apply with higher probability. "color_jitter": partial( alb.ColorJitter, brightness=0.4, contrast=0.4, saturation=0.4, hue=0.1, p=0.8 ), "horizontal_flip": partial(T.HorizontalFlip, p=0.5), # Color normalization: whenever selected, always applied. This accepts images # in [0, 255], requires mean and std in [0, 1] and normalizes to `N(0, 1)`. "normalize": partial( alb.Normalize, mean=T.IMAGENET_COLOR_MEAN, std=T.IMAGENET_COLOR_STD, p=1.0 ), } # fmt: on @classmethod def create(cls, name: str, *args, **kwargs) -> Any: r"""Create an object by its name, args and kwargs.""" if "::" in name: name, __kwargs = name.split("::") _kwargs = eval(__kwargs) else: _kwargs = {} _kwargs.update(kwargs) return super().create(name, *args, **_kwargs) @classmethod def from_config(cls, config: Config): r"""Augmentations cannot be created from config, only :meth:`create`.""" raise NotImplementedError class PretrainingDatasetFactory(Factory): r""" Factory to create :class:`~torch.utils.data.Dataset` s for pretraining VirTex models. Datasets are created depending on pretraining task used. Typically these datasets either provide image-caption pairs, or only images from COCO Captions dataset (serialized to an LMDB file). As an exception, the dataset for ``multilabel_classification`` provides COCO images and labels of their bounding box annotations. Possible choices: ``{"bicaptioning", "captioning", "masked_lm", "token_classification", "multilabel_classification"}``. """ PRODUCTS: Dict[str, Callable] = { "virtex": vdata.CaptioningDataset, "bicaptioning": vdata.CaptioningDataset, "captioning": vdata.CaptioningDataset, "masked_lm": vdata.MaskedLmDataset, "token_classification": vdata.TokenClassificationDataset, "multilabel_classification": vdata.MultiLabelClassificationDataset, } @classmethod def from_config(cls, config: Config, split: str = "train"): r""" Create a dataset directly from config. Names in this factory match with names in :class:`PretrainingModelFactory` because both use same config parameter ``MODEL.NAME`` to create objects. Parameters ---------- config: virtex.config.Config Config object with all the parameters. split: str, optional (default = "train") Which split to load for the dataset. One of ``{"train", "val"}``. """ _C = config # Every dataset needs these two args. kwargs = {"data_root": _C.DATA.ROOT, "split": split} # Create a list of image transformations based on transform names. image_transform_list: List[Callable] = [] for name in getattr(_C.DATA, f"IMAGE_TRANSFORM_{split.upper()}"): # Pass dimensions if cropping / resizing, else rely on the defaults # as per `ImageTransformsFactory`. if "resize" in name or "crop" in name: image_transform_list.append( ImageTransformsFactory.create(name, _C.DATA.IMAGE_CROP_SIZE) ) else: image_transform_list.append(ImageTransformsFactory.create(name)) kwargs["image_transform"] = alb.Compose(image_transform_list) tokenizer = TokenizerFactory.from_config(_C) if _C.MODEL.NAME in {"virtex", "bicaptioning", "captioning"}: kwargs.update( tokenizer=tokenizer, max_caption_length=_C.DATA.MAX_CAPTION_LENGTH, use_single_caption=_C.DATA.USE_SINGLE_CAPTION, percentage=_C.DATA.USE_PERCENTAGE if split == "train" else 100.0, ) elif _C.MODEL.NAME == "token_classification": kwargs.update( tokenizer=tokenizer, max_caption_length=_C.DATA.MAX_CAPTION_LENGTH ) elif _C.MODEL.NAME == "masked_lm": kwargs.update( tokenizer=tokenizer, max_caption_length=_C.DATA.MAX_CAPTION_LENGTH, use_single_caption=_C.DATA.USE_SINGLE_CAPTION, percentage=_C.DATA.USE_PERCENTAGE if split == "train" else 100.0, mask_proportion=_C.DATA.MASKED_LM.MASK_PROPORTION, mask_probability=_C.DATA.MASKED_LM.MASK_PROBABILITY, replace_probability=_C.DATA.MASKED_LM.REPLACE_PROBABILITY, ) elif _C.MODEL.NAME in {"virtex_web", "miniclip_web"}: # Remove "split" argument, not necessary. _ = kwargs.pop("split") kwargs.update( batch_size=_C.OPTIM.BATCH_SIZE // dist.get_world_size(), tokenizer=tokenizer, max_caption_length=_C.DATA.MAX_CAPTION_LENGTH, ) # Dataset names match with model names (and ofcourse pretext names). return cls.create(_C.MODEL.NAME, **kwargs) class DownstreamDatasetFactory(Factory): r""" Factory to create :class:`~torch.utils.data.Dataset` s for evaluating VirTex models on downstream tasks. Possible choices: ``{"datasets/VOC2007", "datasets/imagenet"}``. """ PRODUCTS: Dict[str, Callable] = { "datasets/VOC2007": vdata.VOC07ClassificationDataset, "datasets/imagenet": vdata.ImageNetDataset, "datasets/inaturalist": vdata.INaturalist2018Dataset, } @classmethod def from_config(cls, config: Config, split: str = "train"): r""" Create a dataset directly from config. Names in this factory are paths of dataset directories (relative to the project directory), because config parameter ``DATA.ROOT`` is used to create objects. Parameters ---------- config: virtex.config.Config Config object with all the parameters. split: str, optional (default = "train") Which split to load for the dataset. One of ``{"trainval", "test"}`` for VOC2007, or one of ``{"train", "val"}`` for ImageNet. """ _C = config # Every dataset needs these two args. kwargs = {"data_root": _C.DATA.ROOT, "split": split} # For VOC2007, `IMAGE_TRANSFORM_TRAIN` is used for "trainval" split and # `IMAGE_TRANSFORM_VAL` is used fo "test" split. image_transform_names: List[str] = list( _C.DATA.IMAGE_TRANSFORM_TRAIN if "train" in split else _C.DATA.IMAGE_TRANSFORM_VAL ) # Create a list of image transformations based on names. image_transform_list: List[Callable] = [] for name in image_transform_names: # Pass dimensions for resize/crop, else rely on the defaults. if name.split("::")[0] in { "random_resized_crop", "center_crop", "global_resize", }: transform = ImageTransformsFactory.create(name, 224) elif name.split("::")[0] in {"smallest_resize"}: transform = ImageTransformsFactory.create(name, 256) else: transform = ImageTransformsFactory.create(name) image_transform_list.append(transform) kwargs["image_transform"] = alb.Compose(image_transform_list) return cls.create(_C.DATA.ROOT, **kwargs) class VisualBackboneFactory(Factory): r""" Factory to create :mod:`~virtex.modules.visual_backbones`. This factory supports any ResNet-like model from `Torchvision `_. Use the method name for model as in torchvision, for example, ``torchvision::resnet50``, ``torchvision::wide_resnet50_2`` etc. Possible choices: ``{"torchvision", "timm"}``. """ PRODUCTS: Dict[str, Callable] = { "torchvision": visual_backbones.TorchvisionVisualBackbone, "timm": visual_backbones.TimmVisualBackbone, } @classmethod def from_config(cls, config: Config) -> visual_backbones.VisualBackbone: r""" Create a visual backbone directly from config. Parameters ---------- config: virtex.config.Config Config object with all the parameters. """ _C = config kwargs = {"visual_feature_size": _C.MODEL.VISUAL.FEATURE_SIZE} # Check the name for models from torchvision or timm. package_name, cnn_name = _C.MODEL.VISUAL.NAME.split("::") kwargs["pretrained"] = _C.MODEL.VISUAL.PRETRAINED kwargs["frozen"] = _C.MODEL.VISUAL.FROZEN return cls.create(package_name, cnn_name, **kwargs) class TextualHeadFactory(Factory): r""" Factory to create :mod:`~virtex.modules.textual_heads`. Architectural hyperparameters for transformers can be specified as ``name::*``. For example, ``transdec_postnorm::L1_H1024_A16_F4096`` would create a transformer textual head with ``L = 1`` layers, ``H = 1024`` hidden size, ``A = 16`` attention heads, and ``F = 4096`` size of feedforward layers. Textual head should be ``"none"`` for pretraining tasks which do not involve language modeling, such as ``"token_classification"``. Possible choices: ``{"transdec_postnorm", "transdec_prenorm", "none"}``. """ PRODUCTS: Dict[str, Callable] = { "transdec_prenorm": partial( textual_heads.TransformerDecoderTextualHead, norm_type="pre" ), "transdec_postnorm": partial( textual_heads.TransformerDecoderTextualHead, norm_type="post" ), "transenc_postnorm": partial( textual_heads.TransformerEncoderTextualHead, norm_type="post" ), "transenc_prenorm": partial( textual_heads.TransformerEncoderTextualHead, norm_type="pre" ), "none": textual_heads.LinearTextualHead, } @classmethod def from_config(cls, config: Config) -> nn.Module: r""" Create a textual head directly from config. Parameters ---------- config: virtex.config.Config Config object with all the parameters. """ _C = config name = _C.MODEL.TEXTUAL.NAME kwargs = { "visual_feature_size": _C.MODEL.VISUAL.FEATURE_SIZE, "vocab_size": _C.DATA.VOCAB_SIZE, } if "trans" in _C.MODEL.TEXTUAL.NAME: # Get architectural hyper-params as per name by matching regex. name, architecture = name.split("::") architecture = re.match(r"L(\d+)_H(\d+)_A(\d+)_F(\d+)", architecture) num_layers = int(architecture.group(1)) hidden_size = int(architecture.group(2)) attention_heads = int(architecture.group(3)) feedforward_size = int(architecture.group(4)) # Mask the future tokens for autoregressive captioning. mask_future = _C.MODEL.NAME in {"virtex", "virtex_web", "captioning", "bicaptioning"} kwargs.update( hidden_size=hidden_size, num_layers=num_layers, attention_heads=attention_heads, feedforward_size=feedforward_size, dropout=_C.MODEL.TEXTUAL.DROPOUT, mask_future_positions=mask_future, max_caption_length=_C.DATA.MAX_CAPTION_LENGTH, padding_idx=_C.DATA.UNK_INDEX, ) return cls.create(name, **kwargs) class PretrainingModelFactory(Factory): r""" Factory to create :mod:`~virtex.models` for different pretraining tasks. Possible choices: ``{"bicaptioning", "captioning", "masked_lm", "token_classification", "multilabel_classification"}``. """ PRODUCTS: Dict[str, Callable] = { # First two are basically the same. Added for shorthand notation. "virtex": vmodels.VirTexModel, "bicaptioning": vmodels.BidirectionalCaptioningModel, "captioning": vmodels.ForwardCaptioningModel, "masked_lm": vmodels.MaskedLMModel, "token_classification": vmodels.TokenClassificationModel, "multilabel_classification": vmodels.MultiLabelClassificationModel, "virtex_web": vmodels.VirTexModel, "miniclip_web": vmodels.ImageTextContrastiveModel, } @classmethod def from_config(cls, config: Config) -> nn.Module: r""" Create a model directly from config. Parameters ---------- config: virtex.config.Config Config object with all the parameters. """ _C = config # Build visual and textual streams based on config. visual = VisualBackboneFactory.from_config(_C) textual = TextualHeadFactory.from_config(_C) # Add model specific kwargs. Refer call signatures of specific models # for matching kwargs here. if _C.MODEL.NAME in {"virtex", "captioning", "bicaptioning", "virtex_web"}: kwargs = { "sos_index": _C.DATA.SOS_INDEX, "eos_index": _C.DATA.EOS_INDEX, "label_smoothing": _C.MODEL.LABEL_SMOOTHING, "decoder": CaptionDecoderFactory.from_config(_C), } elif _C.MODEL.NAME in {"miniclip_web"}: kwargs = {"label_smoothing": _C.MODEL.LABEL_SMOOTHING} elif _C.MODEL.NAME == "token_classification": kwargs = { "ignore_indices": [ _C.DATA.UNK_INDEX, _C.DATA.SOS_INDEX, _C.DATA.EOS_INDEX, _C.DATA.MASK_INDEX, ] } elif _C.MODEL.NAME == "multilabel_classification": kwargs = {"ignore_indices": [0]} # background index else: kwargs = {} return cls.create(_C.MODEL.NAME, visual, textual, **kwargs) class CaptionDecoderFactory(Factory): r""" Factory to create decoders from predicting captions from VirTex model. Possible choices: ``{"beam_search", "nucleus_sampling"}``. """ PRODUCTS: Dict[str, Callable] = { "beam_search": AutoRegressiveBeamSearch, "nucleus_sampling": AutoRegressiveNucleusSampling, } @classmethod def from_config(cls, config: Config) -> nn.Module: r""" Create a model directly from config. Parameters ---------- config: virtex.config.Config Config object with all the parameters. """ _C = config kwargs = { "eos_index": _C.DATA.EOS_INDEX, "max_steps": _C.MODEL.DECODER.MAX_DECODING_STEPS, } if _C.MODEL.DECODER.NAME == "beam_search": kwargs["beam_size"] = _C.MODEL.DECODER.BEAM_SIZE elif _C.MODEL.DECODER.NAME == "nucleus_sampling": kwargs["nucleus_size"] = _C.MODEL.DECODER.NUCLEUS_SIZE return cls.create(_C.MODEL.DECODER.NAME, **kwargs) class OptimizerFactory(Factory): r"""Factory to create optimizers. Possible choices: ``{"sgd", "adamw"}``.""" PRODUCTS: Dict[str, Callable] = {"sgd": optim.SGD, "adamw": optim.AdamW} @classmethod def from_config( cls, config: Config, named_parameters: Iterable[Any] ) -> optim.Optimizer: r""" Create an optimizer directly from config. Parameters ---------- config: virtex.config.Config Config object with all the parameters. named_parameters: Iterable Named parameters of model (retrieved by ``model.named_parameters()``) for the optimizer. We use named parameters to set different LR and turn off weight decay for certain parameters based on their names. """ _C = config # Set different learning rate for CNN and rest of the model during # pretraining. This doesn't matter for downstream evaluation because # there are no modules with "cnn" in their name. # Also turn off weight decay for layer norm and bias in textual stream. param_groups = [] for name, param in named_parameters: wd = 0.0 if re.match(_C.OPTIM.NO_DECAY, name) else _C.OPTIM.WEIGHT_DECAY lr = _C.OPTIM.CNN_LR if "cnn" in name else _C.OPTIM.LR param_groups.append({"params": [param], "lr": lr, "weight_decay": wd}) if _C.OPTIM.OPTIMIZER_NAME == "sgd": kwargs = {"momentum": _C.OPTIM.SGD_MOMENTUM} else: kwargs = {} optimizer = cls.create(_C.OPTIM.OPTIMIZER_NAME, param_groups, **kwargs) if _C.OPTIM.LOOKAHEAD.USE: optimizer = Lookahead( optimizer, k=_C.OPTIM.LOOKAHEAD.STEPS, alpha=_C.OPTIM.LOOKAHEAD.ALPHA ) return optimizer class LRSchedulerFactory(Factory): r""" Factory to create LR schedulers. All schedulers have a built-in LR warmup schedule before actual LR scheduling (decay) starts. Possible choices: ``{"none", "multistep", "linear", "cosine"}``. """ PRODUCTS: Dict[str, Callable] = { "none": lr_scheduler.LinearWarmupNoDecayLR, "multistep": lr_scheduler.LinearWarmupMultiStepLR, "linear": lr_scheduler.LinearWarmupLinearDecayLR, "cosine": lr_scheduler.LinearWarmupCosineAnnealingLR, } @classmethod def from_config( cls, config: Config, optimizer: optim.Optimizer ) -> optim.lr_scheduler.LambdaLR: r""" Create an LR scheduler directly from config. Parameters ---------- config: virtex.config.Config Config object with all the parameters. optimizer: torch.optim.Optimizer Optimizer on which LR scheduling would be performed. """ _C = config kwargs = { "total_steps": _C.OPTIM.NUM_ITERATIONS, "warmup_steps": _C.OPTIM.WARMUP_STEPS, } # Multistep LR requires multiplicative factor and milestones. if _C.OPTIM.LR_DECAY_NAME == "multistep": kwargs.update(gamma=_C.OPTIM.LR_GAMMA, milestones=_C.OPTIM.LR_STEPS) return cls.create(_C.OPTIM.LR_DECAY_NAME, optimizer, **kwargs)