import streamlit as st import io # x = st.slider("Select a value") # st.write(x, "squared is", x * x) st.title("Image Captioning Demo from Redcaps") st.sidebar.markdown( """ Image Captioning Model from VirTex trained on Redcaps """ ) with st.spinner("Loading Model"): from model import * sample_images = glob.glob("./samples/*.jpg") download_files() virtexModel = VirTexModel() imageLoader = ImageLoader() random_image = get_rand_img(sample_images) st.sidebar.title("Select a sample image") sample_image = st.sidebar.selectbox( "", sample_images ) if st.sidebar.button("Random Sample Image"): random_image = get_rand_img(sample_images) sample_image = None uploaded_image = None with st.sidebar.form("file-uploader-form", clear_on_submit=True): uploaded_file = st.file_uploader("Choose a file") submitted = st.form_submit_button("Submit") if uploaded_file is not None and submitted: uploaded_image = Image.open(io.BytesIO(uploaded_file.get_values())) if uploaded_image is None and submitted: st.write("Please select a file to upload") else: image_file = sample_image if sample_image is not None else random_image image = uploaded_image if uploaded_image is not None else Image.open() image_dict = imageLoader.transform(image) show.image(st.image(image_dict["image"]), "Target Image") with st.spinner("Generating Caption"): subreddit, caption = virtexModel.predict(image_dict) st.header("Predicted Caption:\n\n") st.subheader(f"Subreddit: {subreddit}\n") st.subheader(f"Caption: {caption}\n") image.close()