# GENERATE TIME: Fri May 24 08:49:55 2024 # CMD: # train_edlora.py -opt ortho_datasets/train_configs/ortho/0022_elsa_ortho.yml name: 0022_elsa_ortho manual_seed: 1022 mixed_precision: fp16 gradient_accumulation_steps: 1 # dataset and data loader settings datasets: train: name: LoraDataset concept_list: ortho_datasets/data_configs/elsa.json use_caption: true use_mask: true instance_transform: - { type: HumanResizeCropFinalV3, size: 512, crop_p: 0.5 } - { type: ToTensor } - { type: Normalize, mean: [ 0.5 ], std: [ 0.5 ] } - { type: ShuffleCaption, keep_token_num: 1 } - { type: EnhanceText, enhance_type: human } replace_mapping: : batch_size_per_gpu: 2 dataset_enlarge_ratio: 500 val_vis: name: PromptDataset prompts: datasets/validation_prompts/single-concept/characters/test_girl.txt num_samples_per_prompt: 8 latent_size: [ 4,64,64 ] replace_mapping: : batch_size_per_gpu: 4 models: pretrained_path: nitrosocke/mo-di-diffusion enable_edlora: true # true means ED-LoRA, false means vanilla LoRA finetune_cfg: text_embedding: enable_tuning: true lr: !!float 1e-3 text_encoder: enable_tuning: true lora_cfg: rank: 5 alpha: 1.0 where: CLIPAttention lr: !!float 1e-5 unet: enable_tuning: true lora_cfg: rank: 5 alpha: 1.0 where: Attention lr: !!float 1e-4 new_concept_token: + initializer_token: +man noise_offset: 0.01 attn_reg_weight: 0.01 reg_full_identity: false use_mask_loss: true gradient_checkpoint: false enable_xformers: true # path path: pretrain_network: ~ # training settings train: optim_g: type: AdamW lr: !!float 0.0 # no use since we define different component lr in model weight_decay: 0.01 betas: [ 0.9, 0.999 ] # align with taming # dropkv unet_kv_drop_rate: 0 scheduler: linear emb_norm_threshold: !!float 5.5e-1 # validation settings val: val_during_save: true compose_visualize: true alpha_list: [0, 0.7, 1.0] # 0 means only visualize embedding (without lora weight) sample: num_inference_steps: 50 guidance_scale: 7.5 # logging settings logger: print_freq: 10 save_checkpoint_freq: !!float 10000