from io import StringIO import core.pipelines as pipelines_functions from inspect import getmembers, isfunction from newspaper import Article from PyPDF2 import PdfFileReader import streamlit as st import pandas as pd def get_pipelines(): pipeline_names, pipeline_funcs = list( zip(*getmembers(pipelines_functions, isfunction)) ) pipeline_names = [ " ".join([n.capitalize() for n in name.split("_")]) for name in pipeline_names ] return pipeline_names, pipeline_funcs @st.experimental_memo def extract_text_from_url(url: str): article = Article(url) article.download() article.parse() return article.text def extract_text_from_file(file): # read text file if file.type == "text/plain": # To convert to a string based IO: stringio = StringIO(file.getvalue().decode("utf-8")) # To read file as string: file_text = stringio.read() return file_text # read pdf file elif file.type == "application/pdf": pdfReader = PdfFileReader(file) count = pdfReader.numPages all_text = "" for i in range(count): try: page = pdfReader.getPage(i) all_text += page.extractText() except: continue file_text = all_text return file_text # read csv file elif file.type == "text/csv": csv = pd.read_csv(file) # get columns of type string string_columns = csv.select_dtypes(include=['object']).columns # get data from columns and join it together file_text = "" for row in csv[string_columns].values.tolist(): # remove NaNs row = [x for x in row if str(x) != 'nan'] for column in row: txt = "" if isinstance(column, list): try: txt = " ".join(column) except: continue elif isinstance(column, str): txt = column else: continue file_text += " " + txt return file_text else: st.warning(f"File type {file.type} not supported") return None