import os os.system("pip install gradio==2.4.6") os.system("pip install gdown lpips") os.system("gdown --id 1HKmjg6iXsWr4aFPuU0gBXPGR83wqMzq7 -O align.dat") os.system("wget https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/ffhq.pkl") os.system("gdown https://github.com/ninja-build/ninja/releases/download/v1.10.2/ninja-linux.zip") os.system("unzip -d /usr/local/bin/") os.system("sudo update-alternatives --install /usr/bin/ninja ninja /usr/local/bin/ninja 1 --force") os.mkdir("embeddings/") import gradio as gr def inference(img): img.save("images/file.png") os.system("python tune.py") return title = "Pivotal Tuning for Latent Based Real Image Editing" description = "Gradio Demo for Pivotal Tuning Inversion. To use it, simply upload your image, or click one of the examples to load them. Read more at the links below. Please use a cropped portrait picture for best results similar to the examples below." article = "

Github Repo Pytorch" gr.Interface(inference, [gr.inputs.Image(type="pil")], gr.outputs.Image(type="pil"),title=title,description=description,article=article,allow_flagging=False,allow_screenshot=False,enable_queue=True).launch(share=True)