from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.pipeline import make_pipeline from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score # Load Iris dataset iris = load_iris() X = iris.data y = iris.target # Split dataset into training and testing sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # Define model model = make_pipeline(StandardScaler(), LogisticRegression(max_iter=1000)) # Train model model.fit(X_train, y_train) # Predict y_pred = model.predict(X_test) # Evaluate model accuracy = accuracy_score(y_test, y_pred) print("Accuracy:", accuracy)