import sqlite3 def convert_type(type): """ Returns SQL type for given AI generated type This function takes AI generated type and returns SQL type. For simplified Data Dictionary enums are converted to text data type, and arrays are converted in text arrays Parameters: type (str): AI generated type Returns: sql_type (str): SQL type """ sql_match = { "string": "TEXT", "integer": "INTEGER", "number": "REAL", "boolean": "BOOLEAN", "array": "TEXT[]", "enum": "TEXT", } sql_type = sql_match.get(type, "TEXT") return sql_type def get_pk_field(node): """ Returns primary key field for given AI generated node This function takes AI generated node dictionary and returns primary key field. Parameters: node (dict): AI generated node dictionary Returns: pk_field (str): Primary key field """ # Look for a typical PK pattern: .id for prop in node["properties"]: if prop["name"] == f"{node['name']}.id": return prop["name"] # Fallback return None def get_all_columns(node): """ Returns all columns for given AI generated node This function takes AI generated node dictionary and returns all columns. Parameters: node (dict): AI generated node dictionary Returns: columns (list): List of column names """ return [prop["name"] for prop in node["properties"]] def as_sql_col(prop_name): """ Returns property name as a sql column name with "." replaced with "__" This function takes AI generated DD node property name and replaces "." with "__". Dot in the field name may cause issues during the SQL table creation. Parameters: prop_name (str): property name Returns: col_name (str): Column name with "." replaced with "__" """ return prop_name.replace(".", "__") def get_foreign_table_and_field(prop_name, node_name): """ Returns foreign table and field for given property name and node_name This function takes AI generated DD node name and property name and returns foreign table and field. Parameters: prop_name (str): property name node_name (str): node name Returns: foreign_table (str): Foreign table name foreign_field (str): Foreign field name """ # Looks for pattern: e.g. project.id when not in 'project' if prop_name.endswith(".id") and not prop_name.startswith(node_name + "."): parent = prop_name.split(".")[0] return parent, prop_name return None, None def transform_dd(dd): """ Returns transformed DD This function takes AI generated DD and ensures all required fields are present in properties and properties are dictionaries. Parameters: dd (dict): AI generated DD Returns: dd (dict): Transformed DD """ for node in dd.get("nodes", []): props = node.get("properties", []) if props and all(isinstance(x, dict) for x in props): prop_names = {p["name"] for p in props} elif props and all(isinstance(x, str) for x in props): prop_names = set(props) # Upgrade to list of dicts props = [ {"name": prop, "description": "", "type": "string"} for prop in props ] else: props = [] prop_names = set() # Ensure each required field is present in properties for req in node.get("required", []): if req not in prop_names: props.append({"name": req, "description": "", "type": "string"}) prop_names.add(req) node["properties"] = props return dd def generate_create_table(node, table_lookup): """ Returns SQL for the given AI generated node This function takes AI generated node dictionary and returns SQL for the node. Parameters: node (dict): AI generated node dictionary table_lookup (dict): Dictionary of tables and their columns Returns: sql (str): SQL for the node """ col_lines = [] fk_constraints = [] pk_fields = [] pk_field = get_pk_field(node) required = node.get("required", []) for prop in node["properties"]: col = prop["name"] coltype = convert_type(prop["type"]) sql_col = as_sql_col(col) line = f' "{sql_col}" {coltype}' if pk_field and col == pk_field: pk_fields.append(sql_col) if col in required or (pk_field and col == pk_field): line += " NOT NULL" col_lines.append(line) # Foreign Keys parent, parent_field = get_foreign_table_and_field(col, node["name"]) if parent: ref_col = as_sql_col(parent_field) parent_cols = table_lookup.get(parent, {}) if parent_field in parent_cols: fk_constraints.append( f' FOREIGN KEY ("{sql_col}") REFERENCES "{parent}"("{ref_col}")' ) else: fk_constraints.append( f" -- WARNING: {parent} does not have field {parent_field}" ) # Primary Keys constraints = [] if pk_fields: constraint_sql = ", ".join(f'"{c}"' for c in pk_fields) constraints.append(f" PRIMARY KEY ({constraint_sql})") lines = col_lines + constraints + fk_constraints return f'CREATE TABLE "{node["name"]}" (\n' + ",\n".join(lines) + "\n);" def validate_sql(sql, node_name): """ Returns validation result for the given SQL This function takes SQL and node name and returns validation result. Parameters: sql (str): SQL node_name (str): Node name Returns: validation_result (str): Validation result """ conn = sqlite3.connect(":memory:") try: conn.execute(sql) validation_result = f'Valid SQL for table "{node_name}"\n' except sqlite3.Error as e: validation_result = f'Invalid SQL for table "{node_name}":\n{e}\n' finally: conn.close() return validation_result def dd_to_sql(dd): """ Returns SQL for the given AI generated DD This function takes AI generated DD and returns SQL for the DD. Parameters: dd (dict): AI generated DD Returns: sql (str): SQL validation (str): Validation result """ dd = transform_dd(dd) # Build a lookup for table columns in all nodes table_lookup = {} for node in dd["nodes"]: table_lookup[node["name"]] = get_all_columns(node) # pprint.pprint(table_lookup) # Generate SQL combined_sql = "" validation = "Validation notes:\n" for node in dd["nodes"]: sql = generate_create_table(node, table_lookup) + "\n\n" validation = validation + validate_sql(sql, node["name"]) combined_sql = combined_sql + sql return combined_sql, validation