import gradio as gr from langchain.document_loaders import OnlinePDFLoader from langchain.text_splitter import CharacterTextSplitter from langchain.llms import HuggingFaceHub from langchain.embeddings import HuggingFaceHubEmbeddings from langchain.vectorstores import Chroma from langchain.chains import RetrievalQA def loading_pdf(): return 'Loading...' def pdf_chaings(pdf_doc, repo_id): loader = OnlinePDFLoader(pdf_doc.name) documents = loader.load() text_splitter = CharacterTextSplitter(chunk_size=300, chunk_overlap=0) texts = text_splitter.split_documents(documents) embeddings = HuggingFaceHubEmbeddings() db = Chroma.from_documents(texts, embeddings) retriever = db.as_retriever() llm = HuggingFaceHub(repo_id=repo_id, model_kwargs={'temperature': 0.1, 'max_new_tokens': 250}) global qa qa = RetrievalQA.from_chain_type(llm=llm, chain_type='stuff', retriever=retriever, return_source_documents=True) return "Ready" def add_text(history, text): history = history + [(text, None)] return history, '' def bot(history): response = infer(history[-1][0]) history[-1][1] = response['result'] return history def infer(question): query = question result = qa({'query': query}) return result css=""" #col-container {max-width: 700px; margin-left: auto; margin-right: auto;} """ title = """