from unsloth import FastLanguageModel class InferencePipeline: def __init__(self, conf, api_key): self.conf = conf self.token = api_key self.model, self.tokenizer = self.get_model() def get_model(self): model, tokenizer = FastLanguageModel.from_pretrained( model_name = self.conf["model"]["model_name"], max_seq_length = self.conf["model"]["max_seq_length"], dtype = self.conf["model"]["dtype"], load_in_4bit = self.conf["model"]["load_in_4bit"], token = self.token ) FastLanguageModel.for_inference(model) # Enable native 2x faster inference return model, tokenizer def infer(self, prompt): inputs = self.tokenizer([prompt], return_tensors = "pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens = self.conf["model"]["max_new_tokens"], use_cache = True) outputs = tokenizer.batch_decode(outputs) return outputs #pipeline = InferencePipeline(conf, # api_key=keys["huggingface"], # prompt, # context # ) # #pipeline.infer(prompt)