import json import os import pandas as pd from datetime import datetime, timedelta import dateutil from src.display.formatting import has_no_nan_values, make_clickable_model from src.display.utils import AutoEvalColumn, EvalQueueColumn, ModelType, Tasks, Precision, WeightType from src.leaderboard.read_evals import get_raw_eval_results def get_leaderboard_df(results_path: str, requests_path: str, cols: list, benchmark_cols: list) -> pd.DataFrame: """Creates a dataframe from all the individual experiment results""" raw_data = get_raw_eval_results(results_path, requests_path) all_data_json = [v.to_dict() for v in raw_data] df = pd.DataFrame.from_records(all_data_json) if df.empty: print("No evaluation results found. Returning empty DataFrame with correct columns.") return pd.DataFrame(columns=cols) df = df.sort_values(by=[AutoEvalColumn().average.name], ascending=False) df = df[cols].round(decimals=4) df = df[has_no_nan_values(df, benchmark_cols)] return df def get_evaluation_queue_df(save_path: str, cols: list) -> list[pd.DataFrame]: """Creates the different dataframes for the evaluation queues requestes""" all_evals = [] # Define a threshold to identify "stuck" jobs time_threshold = datetime.now() - timedelta(hours=1) # Use os.walk for a robust way to find all files recursively for root, _, files in os.walk(save_path): for filename in files: if filename.endswith(".json"): file_path = os.path.join(root, filename) try: with open(file_path, "r") as fp: data = json.load(fp) # Check for "stuck" jobs if data.get("status") == "RUNNING": submitted_time_str = data.get("submitted_at") if submitted_time_str: submitted_time = dateutil.parser.isoparse(submitted_time_str) if submitted_time < time_threshold: print(f"Stuck job detected for {data['model']}. Changing status to PENDING.") data["status"] = "PENDING" data[EvalQueueColumn.model.name] = make_clickable_model(data["model"]) data[EvalQueueColumn.revision.name] = data.get("revision", "main") all_evals.append(data) except Exception as e: print(f"Error processing file {file_path}: {e}") continue pending_list = [e for e in all_evals if e["status"] in ["PENDING", "RERUN"]] running_list = [e for e in all_evals if e["status"] == "RUNNING"] finished_list = [e for e in all_evals if e["status"].startswith("FINISHED") or e["status"] == "PENDING_NEW_EVAL"] df_pending = pd.DataFrame.from_records(pending_list, columns=cols) if pending_list else pd.DataFrame(columns=cols) df_running = pd.DataFrame.from_records(running_list, columns=cols) if running_list else pd.DataFrame(columns=cols) df_finished = pd.DataFrame.from_records(finished_list, columns=cols) if finished_list else pd.DataFrame(columns=cols) return df_finished[cols], df_running[cols], df_pending[cols]