import streamlit as st import pandas as pd from dotenv import load_dotenv from PyPDF2 import PdfReader from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter from langchain.embeddings import OpenAIEmbeddings, HuggingFaceInstructEmbeddings from langchain.vectorstores import FAISS, Chroma from langchain.embeddings import HuggingFaceEmbeddings # General embeddings from HuggingFace models. from langchain.chat_models import ChatOpenAI from langchain.memory import ConversationBufferMemory from langchain.chains import ConversationalRetrievalChain from htmlTemplates import css, bot_template, user_template from langchain.llms import HuggingFaceHub, LlamaCpp, CTransformers # For loading transformer models. from langchain.document_loaders import PyPDFLoader, TextLoader, JSONLoader, CSVLoader import tempfile # 임시 파일을 생성하기 위한 라이브러리입니다. import os import json # PDF 문서로부터 텍스트를 추출하는 함수입니다. def get_pdf_text(pdf_docs): text = '' pdf_reader = PdfReader(pdf_docs) for page in pdf_reader.pages: text += page.extract_text() return text # 과제 # 아래 텍스트 추출 함수를 작성 def get_text_file(txt_docs): text = txt_docs.read().decode("utf-8") return text def get_csv_file(csv_docs): text = '' data = pd.read_csv(csv_docs) for index, row in data.iterrows(): row_text = ' '.join(f"{col}: {row[col]}" for col in data.columns) text += row_text + '\n' return text def get_json_file(json_docs): text = '' json_data = json.load(json_docs) for key, values in json_data.items(): for value in values: text += f"{key}: {value}\n" return text # 문서들을 처리하여 텍스트 청크로 나누는 함수입니다. def get_text_chunks(documents): text_splitter = RecursiveCharacterTextSplitter( chunk_size=1000, chunk_overlap=200, length_function=len ) combined_text = "\n".join(documents) chunks = text_splitter.split_text(combined_text) return chunks # 텍스트 청크들로부터 벡터 스토어를 생성하는 함수입니다. def get_vectorstore(text_chunks): # OpenAI 임베딩 모델을 로드합니다. (Embedding models - Ada v2) embeddings = OpenAIEmbeddings() vectorstore = FAISS.from_texts(text_chunks, embeddings) # FAISS 벡터 스토어를 생성합니다. return vectorstore # 생성된 벡터 스토어를 반환합니다. def get_conversation_chain(vectorstore): gpt_model_name = 'gpt-3.5-turbo' llm = ChatOpenAI(model_name=gpt_model_name) # gpt-3.5 모델 로드 # 대화 기록을 저장하기 위한 메모리를 생성합니다. memory = ConversationBufferMemory( memory_key='chat_history', return_messages=True) # 대화 검색 체인을 생성합니다. conversation_chain = ConversationalRetrievalChain.from_llm( llm=llm, retriever=vectorstore.as_retriever(), memory=memory ) return conversation_chain # 사용자 입력을 처리하는 함수입니다. def handle_userinput(user_question): # 대화 체인을 사용하여 사용자 질문에 대한 응답을 생성합니다. response = st.session_state.conversation({'question': user_question}) # 대화 기록을 저장합니다. st.session_state.chat_history = response['chat_history'] for i, message in enumerate(st.session_state.chat_history): if i % 2 == 0: st.write(user_template.replace( "{{MSG}}", message.content), unsafe_allow_html=True) else: st.write(bot_template.replace( "{{MSG}}", message.content), unsafe_allow_html=True) def main(): load_dotenv() st.set_page_config(page_title="Chat with multiple Files", page_icon=":books:") st.write(css, unsafe_allow_html=True) if "conversation" not in st.session_state: st.session_state.conversation = None if "chat_history" not in st.session_state: st.session_state.chat_history = None st.header("Chat with multiple Files :") user_question = st.text_input("Ask a question about your documents:") if user_question: handle_userinput(user_question) with st.sidebar: openai_key = st.text_input("Paste your OpenAI API key (sk-...)") if openai_key: os.environ["OPENAI_API_KEY"] = openai_key st.subheader("Your documents") docs = st.file_uploader( "Upload your PDFs here and click on 'Process'", accept_multiple_files=True) if st.button("Process"): with st.spinner("Processing"): # get pdf text doc_list = [] for file in docs: try: if file.type == 'text/plain': text = get_text_file(file) elif file.type in ['application/octet-stream', 'application/pdf']: text = get_pdf_text(file) elif file.type == 'text/csv': text = get_csv_file(file) elif file.type == 'application/json': text = get_json_file(file) else: text = "Unsupported file format" print(f"File processed: {file.name}, Text length: {len(text)}") doc_list.append(text) except Exception as e: print(f"Error processing file {file.name}: {e}") # get the text chunks combined_documents = "\n".join(doc_list) text_chunks = get_text_chunks(combined_documents) # create vector store vectorstore = get_vectorstore(text_chunks) # create conversation chain st.session_state.conversation = get_conversation_chain( vectorstore) if __name__ == '__main__': main()