"""Various positional encodings for the transformer.""" import math import torch from torch import nn from util.misc import NestedTensor class PositionEmbeddingSine(nn.Module): """This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images.""" def __init__(self, num_pos_feats=64, temperature=10000, normalize=False, scale=None): super().__init__() self.num_pos_feats = num_pos_feats self.temperature = temperature self.normalize = normalize if scale is not None and normalize is False: raise ValueError('normalize should be True if scale is passed') if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, tensor_list: NestedTensor): x = tensor_list.tensors mask = tensor_list.mask assert mask is not None not_mask = ~mask y_embed = not_mask.cumsum(1, dtype=torch.float32) x_embed = not_mask.cumsum(2, dtype=torch.float32) if self.normalize: eps = 1e-6 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_t = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_t = self.temperature**(2 * (dim_t // 2) / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_t pos_y = y_embed[:, :, :, None] / dim_t pos_x = torch.stack( (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_y = torch.stack( (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) return pos class PositionEmbeddingSineHW(nn.Module): """This is a more standard version of the position embedding, very similar to the one used by the Attention is all you need paper, generalized to work on images.""" def __init__(self, num_pos_feats=64, temperatureH=10000, temperatureW=10000, normalize=False, scale=None): super().__init__() self.num_pos_feats = num_pos_feats # 128 self.temperatureH = temperatureH # 20 self.temperatureW = temperatureW self.normalize = normalize # true if scale is not None and normalize is False: raise ValueError('normalize should be True if scale is passed') if scale is None: scale = 2 * math.pi self.scale = scale def forward(self, tensor_list: NestedTensor): x = tensor_list.tensors mask = tensor_list.mask assert mask is not None not_mask = ~mask y_embed = not_mask.cumsum(1, dtype=torch.float32) x_embed = not_mask.cumsum(2, dtype=torch.float32) # import pdb; pdb.set_trace() if self.normalize: eps = 1e-6 y_embed = y_embed / (y_embed[:, -1:, :] + eps) * self.scale x_embed = x_embed / (x_embed[:, :, -1:] + eps) * self.scale dim_tx = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_tx = self.temperatureW**(2 * (dim_tx // 2) / self.num_pos_feats) pos_x = x_embed[:, :, :, None] / dim_tx dim_ty = torch.arange(self.num_pos_feats, dtype=torch.float32, device=x.device) dim_ty = self.temperatureH**(2 * (dim_ty // 2) / self.num_pos_feats) pos_y = y_embed[:, :, :, None] / dim_ty pos_x = torch.stack( (pos_x[:, :, :, 0::2].sin(), pos_x[:, :, :, 1::2].cos()), dim=4).flatten(3) pos_y = torch.stack( (pos_y[:, :, :, 0::2].sin(), pos_y[:, :, :, 1::2].cos()), dim=4).flatten(3) pos = torch.cat((pos_y, pos_x), dim=3).permute(0, 3, 1, 2) # import pdb; pdb.set_trace() return pos class PositionEmbeddingLearned(nn.Module): """Absolute pos embedding, learned.""" def __init__(self, num_pos_feats=256): super().__init__() self.row_embed = nn.Embedding(50, num_pos_feats) self.col_embed = nn.Embedding(50, num_pos_feats) self.reset_parameters() def reset_parameters(self): nn.init.uniform_(self.row_embed.weight) nn.init.uniform_(self.col_embed.weight) def forward(self, tensor_list: NestedTensor): x = tensor_list.tensors h, w = x.shape[-2:] i = torch.arange(w, device=x.device) j = torch.arange(h, device=x.device) x_emb = self.col_embed(i) y_emb = self.row_embed(j) pos = torch.cat([ x_emb.unsqueeze(0).repeat(h, 1, 1), y_emb.unsqueeze(1).repeat(1, w, 1), ], dim=-1).permute(2, 0, 1).unsqueeze(0).repeat( x.shape[0], 1, 1, 1) return pos def build_position_encoding(args): N_steps = args.hidden_dim // 2 # 256//2 if args.position_embedding in ('v2', 'sine'): # sine # TODO find a better way of exposing other arguments position_embedding = PositionEmbeddingSineHW( N_steps, temperatureH=args.pe_temperatureH, temperatureW=args.pe_temperatureW, normalize=True) elif args.position_embedding in ('v3', 'learned'): position_embedding = PositionEmbeddingLearned(N_steps) else: raise ValueError(f'not supported {args.position_embedding}') return position_embedding