|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import gc |
|
import unittest |
|
|
|
import numpy as np |
|
import torch |
|
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer |
|
|
|
from diffusers import Transformer2DModel, VQDiffusionPipeline, VQDiffusionScheduler, VQModel |
|
from diffusers.pipelines.vq_diffusion.pipeline_vq_diffusion import LearnedClassifierFreeSamplingEmbeddings |
|
from diffusers.utils import load_numpy, slow, torch_device |
|
from diffusers.utils.testing_utils import require_torch_gpu |
|
|
|
|
|
torch.backends.cuda.matmul.allow_tf32 = False |
|
|
|
|
|
class VQDiffusionPipelineFastTests(unittest.TestCase): |
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
@property |
|
def num_embed(self): |
|
return 12 |
|
|
|
@property |
|
def num_embeds_ada_norm(self): |
|
return 12 |
|
|
|
@property |
|
def text_embedder_hidden_size(self): |
|
return 32 |
|
|
|
@property |
|
def dummy_vqvae(self): |
|
torch.manual_seed(0) |
|
model = VQModel( |
|
block_out_channels=[32, 64], |
|
in_channels=3, |
|
out_channels=3, |
|
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], |
|
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], |
|
latent_channels=3, |
|
num_vq_embeddings=self.num_embed, |
|
vq_embed_dim=3, |
|
) |
|
return model |
|
|
|
@property |
|
def dummy_tokenizer(self): |
|
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") |
|
return tokenizer |
|
|
|
@property |
|
def dummy_text_encoder(self): |
|
torch.manual_seed(0) |
|
config = CLIPTextConfig( |
|
bos_token_id=0, |
|
eos_token_id=2, |
|
hidden_size=self.text_embedder_hidden_size, |
|
intermediate_size=37, |
|
layer_norm_eps=1e-05, |
|
num_attention_heads=4, |
|
num_hidden_layers=5, |
|
pad_token_id=1, |
|
vocab_size=1000, |
|
) |
|
return CLIPTextModel(config) |
|
|
|
@property |
|
def dummy_transformer(self): |
|
torch.manual_seed(0) |
|
|
|
height = 12 |
|
width = 12 |
|
|
|
model_kwargs = { |
|
"attention_bias": True, |
|
"cross_attention_dim": 32, |
|
"attention_head_dim": height * width, |
|
"num_attention_heads": 1, |
|
"num_vector_embeds": self.num_embed, |
|
"num_embeds_ada_norm": self.num_embeds_ada_norm, |
|
"norm_num_groups": 32, |
|
"sample_size": width, |
|
"activation_fn": "geglu-approximate", |
|
} |
|
|
|
model = Transformer2DModel(**model_kwargs) |
|
return model |
|
|
|
def test_vq_diffusion(self): |
|
device = "cpu" |
|
|
|
vqvae = self.dummy_vqvae |
|
text_encoder = self.dummy_text_encoder |
|
tokenizer = self.dummy_tokenizer |
|
transformer = self.dummy_transformer |
|
scheduler = VQDiffusionScheduler(self.num_embed) |
|
learned_classifier_free_sampling_embeddings = LearnedClassifierFreeSamplingEmbeddings(learnable=False) |
|
|
|
pipe = VQDiffusionPipeline( |
|
vqvae=vqvae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
transformer=transformer, |
|
scheduler=scheduler, |
|
learned_classifier_free_sampling_embeddings=learned_classifier_free_sampling_embeddings, |
|
) |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "teddy bear playing in the pool" |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
output = pipe([prompt], generator=generator, num_inference_steps=2, output_type="np") |
|
image = output.images |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
image_from_tuple = pipe( |
|
[prompt], generator=generator, output_type="np", return_dict=False, num_inference_steps=2 |
|
)[0] |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 24, 24, 3) |
|
|
|
expected_slice = np.array([0.6583, 0.6410, 0.5325, 0.5635, 0.5563, 0.4234, 0.6008, 0.5491, 0.4880]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
def test_vq_diffusion_classifier_free_sampling(self): |
|
device = "cpu" |
|
|
|
vqvae = self.dummy_vqvae |
|
text_encoder = self.dummy_text_encoder |
|
tokenizer = self.dummy_tokenizer |
|
transformer = self.dummy_transformer |
|
scheduler = VQDiffusionScheduler(self.num_embed) |
|
learned_classifier_free_sampling_embeddings = LearnedClassifierFreeSamplingEmbeddings( |
|
learnable=True, hidden_size=self.text_embedder_hidden_size, length=tokenizer.model_max_length |
|
) |
|
|
|
pipe = VQDiffusionPipeline( |
|
vqvae=vqvae, |
|
text_encoder=text_encoder, |
|
tokenizer=tokenizer, |
|
transformer=transformer, |
|
scheduler=scheduler, |
|
learned_classifier_free_sampling_embeddings=learned_classifier_free_sampling_embeddings, |
|
) |
|
pipe = pipe.to(device) |
|
pipe.set_progress_bar_config(disable=None) |
|
|
|
prompt = "teddy bear playing in the pool" |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
output = pipe([prompt], generator=generator, num_inference_steps=2, output_type="np") |
|
image = output.images |
|
|
|
generator = torch.Generator(device=device).manual_seed(0) |
|
image_from_tuple = pipe( |
|
[prompt], generator=generator, output_type="np", return_dict=False, num_inference_steps=2 |
|
)[0] |
|
|
|
image_slice = image[0, -3:, -3:, -1] |
|
image_from_tuple_slice = image_from_tuple[0, -3:, -3:, -1] |
|
|
|
assert image.shape == (1, 24, 24, 3) |
|
|
|
expected_slice = np.array([0.6647, 0.6531, 0.5303, 0.5891, 0.5726, 0.4439, 0.6304, 0.5564, 0.4912]) |
|
|
|
assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-2 |
|
assert np.abs(image_from_tuple_slice.flatten() - expected_slice).max() < 1e-2 |
|
|
|
|
|
@slow |
|
@require_torch_gpu |
|
class VQDiffusionPipelineIntegrationTests(unittest.TestCase): |
|
def tearDown(self): |
|
|
|
super().tearDown() |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
|
|
def test_vq_diffusion_classifier_free_sampling(self): |
|
expected_image = load_numpy( |
|
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" |
|
"/vq_diffusion/teddy_bear_pool_classifier_free_sampling.npy" |
|
) |
|
|
|
pipeline = VQDiffusionPipeline.from_pretrained("microsoft/vq-diffusion-ithq") |
|
pipeline = pipeline.to(torch_device) |
|
pipeline.set_progress_bar_config(disable=None) |
|
|
|
|
|
|
|
generator = torch.Generator(device=torch_device).manual_seed(0) |
|
output = pipeline( |
|
"teddy bear playing in the pool", |
|
num_images_per_prompt=1, |
|
generator=generator, |
|
output_type="np", |
|
) |
|
|
|
image = output.images[0] |
|
|
|
assert image.shape == (256, 256, 3) |
|
assert np.abs(expected_image - image).max() < 1e-2 |
|
|