import torch import torch.nn as nn from torch_geometric.nn import GINConv, global_add_pool, global_mean_pool import torch.nn.functional as F import numpy as np class GIN(torch.nn.Module): def __init__(self, num_features, num_classes, dropout, hidden_dim=128, num_layers=5, add_or_mean="add"): super().__init__() self.num_layers = num_layers self.hidden_dim = hidden_dim self.add_or_mean = add_or_mean self.dropout = dropout self.conv_layers = nn.ModuleList() # input features → hidden_dim mlp = nn.Sequential( nn.Linear(num_features, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.BatchNorm1d(hidden_dim) ) self.conv_layers.append(GINConv(mlp, train_eps=True)) # hidden GIN layers for _ in range(num_layers - 1): mlp = nn.Sequential( nn.Linear(hidden_dim, hidden_dim), nn.ReLU(), nn.Linear(hidden_dim, hidden_dim), nn.BatchNorm1d(hidden_dim) ) self.conv_layers.append(GINConv(mlp, train_eps=True)) # Final classifier (after pooling) self.fc = nn.Linear(hidden_dim, num_classes) def forward(self, x, edge_index, batch): for conv in self.conv_layers: x = conv(x, edge_index) x = F.relu(x) x = F.dropout(x, p=self.dropout, training=self.training) # Pool to get graph-level representation if self.add_or_mean == "mean": x = global_mean_pool(x, batch) elif self.add_or_mean == "add": x = global_add_pool(x, batch) x = F.dropout(x, p=0.5, training=self.training) return self.fc(x)