import os import cv2 import gradio as gr import torch from basicsr.archs.srvgg_arch import SRVGGNetCompact from gfpgan.utils import GFPGANer from realesrgan.utils import RealESRGANer os.system("pip freeze") # download weights if not os.path.exists('realesr-general-x4v3.pth'): os.system("wget https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.5.0/realesr-general-x4v3.pth -P .") if not os.path.exists('GFPGANv1.2.pth'): os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.2.pth -P .") if not os.path.exists('GFPGANv1.3.pth'): os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.3.pth -P .") if not os.path.exists('GFPGANv1.4.pth'): os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.0/GFPGANv1.4.pth -P .") if not os.path.exists('RestoreFormer.pth'): os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/RestoreFormer.pth -P .") if not os.path.exists('CodeFormer.pth'): os.system("wget https://github.com/TencentARC/GFPGAN/releases/download/v1.3.4/CodeFormer.pth -P .") # torch.hub.download_url_to_file( # 'https://upload.wikimedia.org/wikipedia/commons/thumb/a/ab/Abraham_Lincoln_O-77_matte_collodion_print.jpg/1024px-Abraham_Lincoln_O-77_matte_collodion_print.jpg', # 'lincoln.jpg') torch.hub.download_url_to_file( 'https://user-images.githubusercontent.com/17445847/187400315-87a90ac9-d231-45d6-b377-38702bd1838f.jpg', 'AI-generate.jpg') # torch.hub.download_url_to_file( # 'https://user-images.githubusercontent.com/17445847/187400981-8a58f7a4-ef61-42d9-af80-bc6234cef860.jpg', # 'Blake_Lively.jpg') # torch.hub.download_url_to_file( # 'https://user-images.githubusercontent.com/17445847/187401133-8a3bf269-5b4d-4432-b2f0-6d26ee1d3307.png', # '10045.png') # background enhancer with RealESRGAN model = SRVGGNetCompact(num_in_ch=3, num_out_ch=3, num_feat=64, num_conv=32, upscale=4, act_type='prelu') model_path = 'realesr-general-x4v3.pth' half = True if torch.cuda.is_available() else False upsampler = RealESRGANer(scale=4, model_path=model_path, model=model, tile=0, tile_pad=10, pre_pad=0, half=half) os.makedirs('output', exist_ok=True) # def inference(img, version, scale, weight): def inference(img, version, scale): # weight /= 100 print(img, version, scale) if scale > 4: scale = 4 # avoid too large scale value try: extension = os.path.splitext(os.path.basename(str(img)))[1] img = cv2.imread(img, cv2.IMREAD_UNCHANGED) if len(img.shape) == 3 and img.shape[2] == 4: img_mode = 'RGBA' elif len(img.shape) == 2: # for gray inputs img_mode = None img = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR) else: img_mode = None h, w = img.shape[0:2] if h < 300: img = cv2.resize(img, (w * 2, h * 2), interpolation=cv2.INTER_LANCZOS4) # if version == 'v1.2': ## face_enhancer = GFPGANer( # model_path='GFPGANv1.2.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler) elif version == 'v1.3': face_enhancer = GFPGANer( model_path='GFPGANv1.3.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler) # elif version == 'v1.4': # face_enhancer = GFPGANer( # model_path='GFPGANv1.4.pth', upscale=2, arch='clean', channel_multiplier=2, bg_upsampler=upsampler) # elif version == 'RestoreFormer': # face_enhancer = GFPGANer( # model_path='RestoreFormer.pth', upscale=2, arch='RestoreFormer', channel_multiplier=2, bg_upsampler=upsampler) # elif version == 'CodeFormer': # face_enhancer = GFPGANer( # model_path='CodeFormer.pth', upscale=2, arch='CodeFormer', channel_multiplier=2, bg_upsampler=upsampler) try: # _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True, weight=weight) _, _, output = face_enhancer.enhance(img, has_aligned=False, only_center_face=False, paste_back=True) except RuntimeError as error: print('Error', error) try: if scale != 2: interpolation = cv2.INTER_AREA if scale < 2 else cv2.INTER_LANCZOS4 h, w = img.shape[0:2] output = cv2.resize(output, (int(w * scale / 2), int(h * scale / 2)), interpolation=interpolation) except Exception as error: print('wrong scale input.', error) if img_mode == 'RGBA': # RGBA images should be saved in png format extension = 'png' else: extension = 'jpg' save_path = f'output/out.{extension}' cv2.imwrite(save_path, output) output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB) return output, save_path except Exception as error: print('global exception', error) return None, None title = "GFPGAN: Practical Face Restoration Algorithm" description = r"""😊 """ article = r""" 😊 """ demo = gr.Interface( inference, [ gr.inputs.Image(type="filepath", label="Input"), # gr.inputs.Radio(['v1.2', 'v1.3', 'v1.4', 'RestoreFormer', 'CodeFormer'], type="value", default='v1.4', label='version'), gr.inputs.Radio(['v1.4'], type="value", default='v1.4', label='version'), gr.inputs.Number(label="Rescaling factor", default=2), # gr.Slider(0, 100, label='Weight, only for CodeFormer. 0 for better quality, 100 for better identity', default=50) ], [ gr.outputs.Image(type="numpy", label="Output (The whole image)"), gr.outputs.File(label="Download the output image") ], title=title, description=description, article=article, # examples=[['AI-generate.jpg', 'v1.4', 2, 50], ['lincoln.jpg', 'v1.4', 2, 50], ['Blake_Lively.jpg', 'v1.4', 2, 50], # ['10045.png', 'v1.4', 2, 50]]).launch() examples=[['AI-generate.jpg', 'v1.4', 2],]) demo.queue(concurrency_count=4) demo.launch()