import click import os import sys import pickle import numpy as np from PIL import Image import torch from configs import paths_config, hyperparameters, global_config from IPython.display import display import matplotlib.pyplot as plt from scripts.latent_editor_wrapper import LatentEditorWrapper image_dir_name = 'images' use_multi_id_training = False global_config.device = 'cuda' paths_config.e4e = 'e4e_ffhq_encode.pt' paths_config.input_data_id = image_dir_name paths_config.input_data_path = f'{image_dir_name}' paths_config.stylegan2_ada_ffhq = 'ffhq.pkl' paths_config.checkpoints_dir = 'checkpoints' paths_config.style_clip_pretrained_mappers = '' hyperparameters.use_locality_regularization = False hyperparameters.lpips_type = 'squeeze' from scripts.run_pti import run_PTI def load_generator(model_id): with open(f'{paths_config.checkpoints_dir}/model_{model_id}_file.pt', 'rb') as f_new: new_G = torch.load(f_new).cuda() return new_G def tensor_to_pil(img): img = (img.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8).detach().cpu().numpy()[0] plt.axis('off') resized_image = Image.fromarray(img,mode='RGB').resize((256,256)) return resized_image def tune(): model_id = run_PTI(run_name='',use_wandb=False, use_multi_id_training=False) w_path_dir = f'{paths_config.embedding_base_dir}/{paths_config.input_data_id}' embedding_dir = f'{w_path_dir}/{paths_config.pti_results_keyword}/file' w_pivot = torch.load(f'{embedding_dir}/0.pt') new_G = load_generator(model_id) new_image = new_G.synthesis(w_pivot, noise_mode='const', force_fp32 = True) tensor_to_pil(new_image).save("output/out.png") #---------------------------------------------------------------------------- if __name__ == '__main__': tune() #----------------------------------------------------------------------------