truongghieu commited on
Commit
db67a3a
1 Parent(s): 1d0015a

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +77 -0
app.py ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import speech_recognition as sr
2
+ import gradio as gr
3
+ import numpy as np
4
+ from transformers import AutoTokenizer, AutoModelForCausalLM, GenerationConfig,BitsAndBytesConfig
5
+ import torch
6
+
7
+ Medical_finetunned_model = "truongghieu/deci-finetuned_Prj2"
8
+ question_text = "This is a question"
9
+ answer_text = "This is an answer"
10
+
11
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
12
+ bnb_config = BitsAndBytesConfig(
13
+ load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype="float16", bnb_4bit_use_double_quant=True
14
+ )
15
+ tokenizer = AutoTokenizer.from_pretrained(Medical_finetunned_model, trust_remote_code=True)
16
+ if torch.cuda.is_available():
17
+ model = AutoModelForCausalLM.from_pretrained(Medical_finetunned_model, trust_remote_code=True, quantization_config=bnb_config)
18
+ else:
19
+ model = AutoModelForCausalLM.from_pretrained("truongghieu/deci-finetuned", trust_remote_code=True)
20
+
21
+
22
+ generation_config = GenerationConfig(
23
+ penalty_alpha=0.6,
24
+ do_sample=True,
25
+ top_k=3,
26
+ temperature=0.5,
27
+ repetition_penalty=1.2,
28
+ max_new_tokens=50,
29
+ pad_token_id=tokenizer.eos_token_id
30
+ )
31
+
32
+ def generate_text(text):
33
+ input_text = f'###Human: \"{text}\"'
34
+ input_ids = tokenizer.encode(input_text, return_tensors="pt").to(device)
35
+ output_ids = model.generate(input_ids, generation_config=generation_config)
36
+ output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
37
+ return output_text
38
+
39
+
40
+ def recognize_speech(audio_data):
41
+
42
+ # return text
43
+ audio_data = sr.AudioData(np.array(audio_data[1]), sample_rate=audio_data[0] , sample_width=2)
44
+
45
+ recognizer = sr.Recognizer()
46
+ try:
47
+ text = recognizer.recognize_google(audio_data)
48
+ question_text = text
49
+ return f"Recognized Speech: {text}"
50
+
51
+ except sr.UnknownValueError:
52
+ return "Speech Recognition could not understand audio."
53
+ except sr.RequestError as e:
54
+ return f"Could not request results from Google Speech Recognition service; {e}"
55
+
56
+
57
+ # audio_input = gr.Audio(type="numpy")
58
+
59
+ # iface = gr.Interface(fn=recognize_speech, inputs=audio_input , outputs="text", title="Speech to Text")
60
+ # # create a place to generate answer
61
+ # answer_text = gr.Textbox(label="Answer")
62
+ # iface_answer = gr.Interface(fn=generate_text, inputs=question_text , outputs="text", title="Answer")
63
+
64
+ # iface.launch()
65
+
66
+ with gr.Blocks as demo:
67
+ with gr.Row():
68
+ gr.Label("Speech Recognition")
69
+ inp = gr.Audio(type="numpy")
70
+ out_text_predict = gr.Textbox(label="Recognized Speech")
71
+ button = gr.Button(label="Recognize Speech", type="button")
72
+ button.click(recognize_speech, inp, out_text_predict)
73
+ with gr.Row():
74
+ out_answer = gr.Textbox(label="Answer")
75
+ button_answer = gr.Button(label="Generate Answer", type="button")
76
+ button_answer.click(generate_text, out_text_predict, out_answer)
77
+ demo.launch()