import logging import os from openai import OpenAI from openai import OpenAIError, RateLimitError from config import OPENAI_API_KEY # Initialize the OpenAI client with the API key from the environment variable #api_key = os.getenv('OPENAI_API_KEY') client = OpenAI(api_key=OPENAI_API_KEY) def generate_rag_response(json_output, user_query): logging.info("Generating RAG response") # Extract text from the JSON output context_texts = [hit['chunk_text'] for hit in json_output] # Create the context for the prompt context = "\n".join(context_texts) prompt = f"Based on the given context, answer the user query: {user_query}\nContext:\n{context}" main_prompt = [ {"role": "system", "content": "You are a helpful assistant."}, {"role": "user", "content": prompt} ] try: # Create a chat completion request chat_completion = client.chat.completions.create( messages=main_prompt, model="gpt-4o-mini", # Use the gpt-4o-mini model timeout=10 ) # Log the response from the model logging.info("RAG response generation completed") logging.info(f"RAG response: {chat_completion.choices[0].message.content}") return chat_completion.choices[0].message.content, None except RateLimitError as e: logging.error(f"Rate limit exceeded: {e}") return None, "Rate limit exceeded. Please try again later." except OpenAIError as e: logging.error(f"OpenAI API error: {e}") return None, f"An error occurred: {str(e)}" except Exception as e: logging.error(f"Unexpected error: {e}") return None, str(e)