# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """SBERT consime similarity metric.""" import evaluate import datasets import torch import torch.nn as nn from transformers import AutoTokenizer, BertModel _CITATION = """\ @article{Reimers2019, archivePrefix = {arXiv}, arxivId = {1908.10084}, author = {Reimers, Nils and Gurevych, Iryna}, doi = {10.18653/v1/d19-1410}, eprint = {1908.10084}, isbn = {9781950737901}, journal = {EMNLP-IJCNLP 2019 - 2019 Conference on Empirical Methods in Natural Language Processing and 9th International Joint Conference on Natural Language Processing, Proceedings of the Conference}, pages = {3982--3992}, title = {{Sentence-BERT: Sentence embeddings using siamese BERT-networks}}, year = {2019} } """ _DESCRIPTION = """\ Use SBERT to produce embedding and score the similarity by cosine similarity """ _KWARGS_DESCRIPTION = """ Calculates how semantic similarity are predictions given some references, using certain scores Args: predictions: list of predictions to score. Each predictions should be a string with tokens separated by spaces. references: list of reference for each prediction. Each reference should be a string with tokens separated by spaces. Returns: score: description of the first score, Examples: Examples should be written in doctest format, and should illustrate how to use the function. >>> sbert_cosine = evaluate.load("transZ/sbert_cosine") >>> results = my_new_module.compute(references=["Nice to meet you"], predictions=["It is my pleasure to meet you"]) >>> print(results) {'score': 0.85} """ @evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION) class sbert_cosine(evaluate.Metric): """TODO: Short description of my evaluation module.""" def _info(self): # TODO: Specifies the evaluate.EvaluationModuleInfo object return evaluate.MetricInfo( # This is the description that will appear on the modules page. module_type="metric", description=_DESCRIPTION, citation=_CITATION, inputs_description=_KWARGS_DESCRIPTION, # This defines the format of each prediction and reference features=[ datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Sequence(datasets.Value("string", id="sequence"), id="references"), } ), datasets.Features( { "predictions": datasets.Value("string", id="sequence"), "references": datasets.Value("string", id="sequence"), } ), ], # Homepage of the module for documentation homepage="http://sbert.net", # Additional links to the codebase or references codebase_urls=["https://github.com/UKPLab/sentence-transformers"], reference_urls=["https://github.com/UKPLab/sentence-transformers"] ) def _download_and_prepare(self, dl_manager): """Optional: download external resources useful to compute the scores""" # TODO: Download external resources if needed pass def _compute(self, predictions, references, model_type='sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2'): """Returns the scores""" def mean_pooling(model_output, attention_mask): token_embeddings = model_output[0] #First element of model_output contains all token embeddings input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) def batch_to_device(batch, target_device): """ send a pytorch batch to a device (CPU/GPU) """ for key in batch: if isinstance(batch[key], torch.Tensor): batch[key] = batch[key].to(target_device) return batch device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") tokenizer = AutoTokenizer.from_pretrained(model_type) model = BertModel.from_pretrained(model_type) model = model.to(device) cosine = nn.CosineSimilarity(dim=0) def calculate(x: str, y: str): encoded_input = tokenizer([x, y], padding=True, truncation=True, return_tensors='pt') encoded_input = batch_to_device(encoded_input, device) model_output = model(**encoded_input) embeds = mean_pooling(model_output, encoded_input['attention_mask']) res = cosine(embeds[0, :], embeds[1, :]).item() return res # avg = lambda x: sum(x) / len(x) with torch.no_grad(): scores = [calculate(pred, ref) for pred, ref in zip(predictions, references)] return { "score": scores, }