{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [], "authorship_tag": "ABX9TyMcuy0u2XnwzWnARu0WjaRq", "include_colab_link": true }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" } }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "view-in-github", "colab_type": "text" }, "source": [ "\"Open" ] }, { "cell_type": "markdown", "source": [ "# Install Packages and Setup Variables" ], "metadata": { "id": "v9bpz99INAc1" } }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "BeuFJKlj9jKz", "outputId": "4c3a9772-cb7d-4fc1-d0e4-64186861e3e5" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m15.7/15.7 MB\u001b[0m \u001b[31m12.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m225.4/225.4 kB\u001b[0m \u001b[31m7.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m51.7/51.7 kB\u001b[0m \u001b[31m2.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m35.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m75.9/75.9 kB\u001b[0m \u001b[31m1.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.1/3.1 MB\u001b[0m \u001b[31m35.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m143.0/143.0 kB\u001b[0m \u001b[31m12.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m76.9/76.9 kB\u001b[0m \u001b[31m6.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m3.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m49.4/49.4 kB\u001b[0m \u001b[31m2.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h\u001b[31mERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.\n", "tensorflow-probability 0.22.0 requires typing-extensions<4.6.0, but you have typing-extensions 4.9.0 which is incompatible.\u001b[0m\u001b[31m\n", "\u001b[0m" ] } ], "source": [ "!pip install -q llama-index==0.9.21 openai==1.6.0 cohere==4.39 tiktoken==0.5.2" ] }, { "cell_type": "code", "source": [ "import os\n", "\n", "# Set the \"OPENAI_API_KEY\" in the Python environment. Will be used by OpenAI client later.\n", "os.environ[\"OPENAI_API_KEY\"] = \"\"" ], "metadata": { "id": "XuzgSNqcABpV" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "# Load Dataset" ], "metadata": { "id": "f5eV5EnvNCMM" } }, { "cell_type": "markdown", "source": [ "## Download" ], "metadata": { "id": "q-7mRQ-mNJlm" } }, { "cell_type": "markdown", "source": [ "The dataset includes several articles from the TowardsAI blog, which provide an in-depth explanation of the LLaMA2 model." ], "metadata": { "id": "3PsdOdMUNmEi" } }, { "cell_type": "code", "source": [ "!wget https://raw.githubusercontent.com/AlaFalaki/tutorial_notebooks/main/data/mini-dataset.json" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "3ImRCP7pACaI", "outputId": "9a63bdea-54f7-4923-ccbb-cab03b312774" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "--2023-12-25 17:33:36-- https://raw.githubusercontent.com/AlaFalaki/tutorial_notebooks/main/data/mini-dataset.json\n", "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.110.133, 185.199.108.133, 185.199.111.133, ...\n", "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.110.133|:443... connected.\n", "HTTP request sent, awaiting response... 200 OK\n", "Length: 25361 (25K) [text/plain]\n", "Saving to: ‘mini-dataset.json’\n", "\n", "mini-dataset.json 100%[===================>] 24.77K --.-KB/s in 0.006s \n", "\n", "2023-12-25 17:33:37 (3.76 MB/s) - ‘mini-dataset.json’ saved [25361/25361]\n", "\n" ] } ] }, { "cell_type": "markdown", "source": [ "## Read File" ], "metadata": { "id": "bZZLK_wyEc-L" } }, { "cell_type": "code", "source": [ "import json\n", "\n", "# Load the file as a JSON\n", "with open('./mini-dataset.json', 'r') as file:\n", " data = json.load(file)\n", "\n", "# The number of chunks in the dataset.\n", "len( data['chunks'] )" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "miUqycqAEfr7", "outputId": "10005d5f-15c0-4565-a58a-6cb7e466acb4" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "22" ] }, "metadata": {}, "execution_count": 16 } ] }, { "cell_type": "code", "source": [ "# Flatten the JSON variable to a list of texts.\n", "texts = [item['text'] for item in data['chunks']]" ], "metadata": { "id": "Mq5WKj0QEfpk" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "# Generate Embedding" ], "metadata": { "id": "f86yksB9K571" } }, { "cell_type": "code", "source": [ "from llama_index import Document\n", "\n", "# Convert the texts to Document objects so the LlamaIndex framework can process them.\n", "documents = [Document(text=t) for t in texts]" ], "metadata": { "id": "iXrr5-tnEfm9" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "from llama_index import VectorStoreIndex\n", "\n", "# Build index / generate embeddings using OpenAI.\n", "index = VectorStoreIndex.from_documents(documents)" ], "metadata": { "id": "qQit27lBEfkV" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "# Save the generated embeddings.\n", "# index.storage_context.persist(persist_dir=\"indexes\")" ], "metadata": { "id": "xxB0A9ZYM-OD" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "# Query Dataset" ], "metadata": { "id": "3DoUxd8KK--Q" } }, { "cell_type": "code", "source": [ "# Define a query engine that is responsible for retrieving related pieces of text,\n", "# and using a LLM to formulate the final answer.\n", "query_engine = index.as_query_engine()" ], "metadata": { "id": "bUaNH97dEfh9" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "response = query_engine.query(\n", " \"How many parameters LLaMA2 model has?\"\n", ")\n", "print(response)" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "tEgFx_aeFS5e", "outputId": "9133bd0c-f0c5-4124-9c4b-ab6c4c32b07a" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "The Llama 2 model has four different model sizes: 7 billion, 13 billion, 34 billion, and 70 billion parameters.\n" ] } ] } ] }