{
"cells": [
{
"cell_type": "markdown",
"metadata": {
"colab_type": "text",
"id": "view-in-github"
},
"source": [
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "-zE1h0uQV7uT"
},
"source": [
"# Install Packages and Setup Variables\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "QPJzr-I9XQ7l",
"outputId": "34a040a3-c044-4348-ef4c-d8cc61364c90"
},
"outputs": [],
"source": [
"!pip install -q llama-index==0.10.57 openai==1.37.0 tiktoken==0.7.0 chromadb==0.5.5 llama-index-vector-stores-chroma==0.1.10 cohere==5.6.2 llama-index-llms-gemini==0.1.11"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "riuXwpSPcvWC"
},
"outputs": [],
"source": [
"import os\n",
"\n",
"# Set the following API Keys in the Python environment. Will be used later.\n",
"os.environ[\"OPENAI_API_KEY\"] = \"\"\n",
"os.environ[\"GOOGLE_API_KEY\"] = \"\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "jIEeZzqLbz0J"
},
"outputs": [],
"source": [
"# Allows running asyncio in environments with an existing event loop, like Jupyter notebooks.\n",
"\n",
"import nest_asyncio\n",
"\n",
"nest_asyncio.apply()"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "Bkgi2OrYzF7q"
},
"source": [
"# Load a Model\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "9oGT6crooSSj"
},
"outputs": [],
"source": [
"from llama_index.llms.gemini import Gemini\n",
"\n",
"llm = Gemini(model=\"models/gemini-1.5-flash\", temperature=1, max_tokens=512)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "0BwVuJXlzHVL"
},
"source": [
"# Create a VectoreStore\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "SQP87lHczHKc"
},
"outputs": [],
"source": [
"import chromadb\n",
"\n",
"# create client and a new collection\n",
"# chromadb.EphemeralClient saves data in-memory.\n",
"chroma_client = chromadb.PersistentClient(path=\"./mini-llama-articles\")\n",
"chroma_collection = chroma_client.create_collection(\"mini-llama-articles\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "zAaGcYMJzHAN"
},
"outputs": [],
"source": [
"from llama_index.vector_stores.chroma import ChromaVectorStore\n",
"\n",
"# Define a storage context object using the created vector database.\n",
"vector_store = ChromaVectorStore(chroma_collection=chroma_collection)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "I9JbAzFcjkpn"
},
"source": [
"# Load the Dataset (CSV)\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "ceveDuYdWCYk"
},
"source": [
"## Download\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "eZwf6pv7WFmD"
},
"source": [
"The dataset includes several articles from the TowardsAI blog, which provide an in-depth explanation of the LLaMA2 model. Read the dataset as a long string.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "wl_pbPvMlv1h",
"outputId": "02651edb-4a76-4bf4-e72f-92219f994292"
},
"outputs": [],
"source": [
"!curl -o ./mini-llama-articles.csv https://raw.githubusercontent.com/AlaFalaki/tutorial_notebooks/main/data/mini-llama-articles.csv"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "VWBLtDbUWJfA"
},
"source": [
"## Read File\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "0Q9sxuW0g3Gd",
"outputId": "b74eb24b-a956-404a-b343-4f961aca883f"
},
"outputs": [],
"source": [
"import csv\n",
"\n",
"rows = []\n",
"\n",
"# Load the file as a JSON\n",
"with open(\"./mini-llama-articles.csv\", mode=\"r\", encoding=\"utf-8\") as file:\n",
" csv_reader = csv.reader(file)\n",
"\n",
" for idx, row in enumerate(csv_reader):\n",
" if idx == 0:\n",
" continue\n",
" # Skip header row\n",
" rows.append(row)\n",
"\n",
"# The number of characters in the dataset.\n",
"len(rows)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "S17g2RYOjmf2"
},
"source": [
"# Convert to Document obj\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "YizvmXPejkJE"
},
"outputs": [],
"source": [
"from llama_index.core import Document\n",
"\n",
"# Convert the chunks to Document objects so the LlamaIndex framework can process them.\n",
"documents = [\n",
" Document(\n",
" text=row[1], metadata={\"title\": row[0], \"url\": row[2], \"source_name\": row[3]}\n",
" )\n",
" for row in rows\n",
"]"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "qjuLbmFuWsyl"
},
"source": [
"# Transforming\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "9z3t70DGWsjO"
},
"outputs": [],
"source": [
"from llama_index.core.node_parser import TokenTextSplitter\n",
"\n",
"# Define the splitter object that split the text into segments with 512 tokens,\n",
"# with a 128 overlap between the segments.\n",
"text_splitter = TokenTextSplitter(separator=\" \", chunk_size=512, chunk_overlap=128)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 385,
"referenced_widgets": [
"7a469b6821ed458d99a1ed57e72b3d68",
"8c556c8c8ce941c6b433780fd4a6ae54",
"626b1ba98c374987913a7a4384f19fa1",
"a4fad4d11a8941f8b90abb3099e9a090",
"c3a4b958e4814294801495226697bce2",
"2e939db189424ab7b5f9095932f2c99f",
"fd6a36e947ec451a938d266117dab12e",
"e4413564a300469d86c3abc567f24701",
"64167ae99cd24c729435aefc1ea13519",
"2634e510d3c844d88891a98661beb6a9",
"6b3d2afb949f4de691ceac601bd96d0e",
"8cc800fbe6bc4f4da5dd6b93d4a5143a",
"812d5d9b04f74592b850b3eb32f88c04",
"ed22c91e813c4351ab1d3eb7e174796c",
"de2088a425104f05b52b7a3236c7baa9",
"6f9f666836084de7894aa2e65c8dbe07",
"63a3dcff335349deacf4abb9b68d76ab",
"99eb83f4b8904e20b45573bab84aa5f4",
"2c8aef5e8ec848c0a23c72581e5f4b1e",
"7d54abb8f3784a789fd042c2ed2dd685",
"a1a88448b188407b8e4aa2af86fb9345",
"6a4cc229f5774cb0b4d3def7eee8b56e"
]
},
"id": "P9LDJ7o-Wsc-",
"outputId": "2e27e965-fd4c-4754-94f5-3a6e33a72dea"
},
"outputs": [],
"source": [
"from llama_index.core.extractors import (\n",
" SummaryExtractor,\n",
" QuestionsAnsweredExtractor,\n",
" KeywordExtractor,\n",
")\n",
"from llama_index.embeddings.openai import OpenAIEmbedding\n",
"from llama_index.core.ingestion import IngestionPipeline\n",
"\n",
"# Create the pipeline to apply the transformation on each chunk,\n",
"# and store the transformed text in the chroma vector store.\n",
"pipeline = IngestionPipeline(\n",
" transformations=[\n",
" text_splitter,\n",
" QuestionsAnsweredExtractor(questions=3, llm=llm),\n",
" SummaryExtractor(summaries=[\"prev\", \"self\"], llm=llm),\n",
" KeywordExtractor(keywords=10, llm=llm),\n",
" OpenAIEmbedding(),\n",
" ],\n",
" vector_store=vector_store,\n",
")\n",
"\n",
"# Run the transformation pipeline.\n",
"nodes = pipeline.run(documents=documents, show_progress=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "mPGa85hM2P3P",
"outputId": "c106c463-2459-4b11-bbae-5bd5e2246011"
},
"outputs": [],
"source": [
"len(nodes)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "23x20bL3_jRb"
},
"outputs": [],
"source": [
"# Compress the vector store directory to a zip file to be able to download and use later.\n",
"!zip -r vectorstore.zip mini-llama-articles"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "OWaT6rL7ksp8"
},
"source": [
"# Load Indexes\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "xnShapZMdlqD"
},
"source": [
"If you have already uploaded the zip file for the vector store checkpoint, please uncomment the code in the following cell block to extract its contents. After doing so, you will be able to load the dataset from local storage.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "SodY2Xpf_kxg",
"outputId": "d60906e8-d08c-4f80-fa30-006bcb732f0d"
},
"outputs": [],
"source": [
"# !unzip vectorstore.zip"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "mXi56KTXk2sp"
},
"outputs": [],
"source": [
"# Load the vector store from the local storage.\n",
"db = chromadb.PersistentClient(path=\"./mini-llama-articles\")\n",
"chroma_collection = db.get_or_create_collection(\"mini-llama-articles\")\n",
"vector_store = ChromaVectorStore(chroma_collection=chroma_collection)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "jKXURvLtkuTS"
},
"outputs": [],
"source": [
"from llama_index.core import VectorStoreIndex\n",
"\n",
"# Create the index based on the vector store.\n",
"index = VectorStoreIndex.from_vector_store(vector_store)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "8JPD8yAinVSq"
},
"source": [
"# Query Dataset\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "b0gue7cyctt1"
},
"outputs": [],
"source": [
"# Define a query engine that is responsible for retrieving related pieces of text,\n",
"# and using a LLM to formulate the final answer.\n",
"query_engine = index.as_query_engine(llm=llm, similarity_top_k=5)\n",
"\n",
"res = query_engine.query(\"How many parameters LLaMA2 model has?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 53
},
"id": "VKK3jMprctre",
"outputId": "93cfbd8f-d0ee-4070-b557-5ae1fff4aeeb"
},
"outputs": [],
"source": [
"res.response"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "465dH4yQc7Ct",
"outputId": "85af1ac6-4ece-4c84-ee1d-675cff3080ee"
},
"outputs": [],
"source": [
"# Show the retrieved nodes\n",
"for src in res.source_nodes:\n",
" print(\"Node ID\\t\", src.node_id)\n",
" print(\"Title\\t\", src.metadata[\"title\"])\n",
" print(\"Text\\t\", src.text)\n",
" print(\"Score\\t\", src.score)\n",
" print(\"-_\" * 20)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "GrqBq8Dfidw6"
},
"source": [
"### Trying a different Query\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "MMBQJcPaigA0"
},
"outputs": [],
"source": [
"res = query_engine.query(\"Does GQA helped LLaMA performance?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 53
},
"id": "N2QbpT0skT75",
"outputId": "c80a09e3-2d1b-464b-bb3e-547c23571b34"
},
"outputs": [],
"source": [
"res.response"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "f9HPdfMjqsbQ",
"outputId": "8ac496a2-90ff-490f-d67c-46ff544faa39"
},
"outputs": [],
"source": [
"for src in res.source_nodes:\n",
" print(\"Node ID\\t\", src.node_id)\n",
" print(\"Title\\t\", src.metadata[\"title\"])\n",
" print(\"Text\\t\", src.text)\n",
" print(\"Score\\t\", src.score)\n",
" print(\"-_\" * 20)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "TmkI8BV8rATi"
},
"source": [
"From the articles:\n",
"\n",
"> [...]The 7 billion model of Llama2 has sufficient NLU (Natural Language Understanding) to create output based on a particular format[...]\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "6Wx-IPSMbSwC"
},
"source": [
"# No Metadata\n"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "h8QUcGEgeNsD"
},
"source": [
"Now, let's evaluate the ability of the query engine independently of the generated metadata, like keyword extraction or summarization.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "oGunPKGRbT6H"
},
"outputs": [],
"source": [
"from llama_index.core import Document\n",
"\n",
"documents_no_meta = [Document(text=row[1]) for row in rows]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 331,
"referenced_widgets": [
"b10233c49dcc4a2f89de5389309d4fb4",
"c617a0bc420b453693bb697a235e50d7",
"f14f74d98f824013b562c82fb251ac26",
"19f8baa6c24e4c7a8888f73f3cb7e3f8",
"19c0bf2b745640b3adf6478738ba02ea",
"0258a4a4bdc24404aa005c3b4d1235ee",
"8da878f475de494fac3f7acf29e4e7f0",
"dc5b9ea6aeea42dfae978e4a8961b03a",
"aefce46940904fce9c4e439784cbc28c",
"dcfeadeb1cc2483399e8194ec43f2eee",
"7cec42608a51413796ec41250e0eed6d",
"036ae37776684a46a1a1f9e3c018a87e",
"de5e18d6629d4cd0abf9e5c72d07ac73",
"29ff5f2d9c114e8bb1b7461dbae2fdb8",
"0f79e4f5836f4ebf80af47c8e100b012",
"99a5712bb6b64f68b30b9a1dbbc803fb",
"24fe3fb4e04546b3a17377d3e6ff61d6",
"931b9be975234aa79ae55aa12629f661",
"63bf1ccee3ad4101920f74bb2410bfe6",
"8f353fecd64a4e18be6fe2eb4fea3f9d",
"d190edde40f04461ba066bc7f10b9d31",
"3114d5176097487bb1313cd49867680f"
]
},
"id": "Hxf4jT6afiZt",
"outputId": "48b34670-17cf-494f-9d39-58ae9c47822a"
},
"outputs": [],
"source": [
"from llama_index.embeddings.openai import OpenAIEmbedding\n",
"from llama_index.core.ingestion import IngestionPipeline\n",
"\n",
"pipeline = IngestionPipeline(\n",
" transformations=[\n",
" text_splitter,\n",
" OpenAIEmbedding(),\n",
" ]\n",
")\n",
"\n",
"nodes_no_meta = pipeline.run(documents=documents_no_meta, show_progress=True)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "A39Y1Rv6fiXE"
},
"outputs": [],
"source": [
"from llama_index.core import ServiceContext\n",
"\n",
"index_no_metadata = VectorStoreIndex(\n",
" nodes=nodes_no_meta,\n",
" service_context=ServiceContext.from_defaults(\n",
" llm=llm,\n",
" ),\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "BOpdZdQufiUu"
},
"outputs": [],
"source": [
"query_engine_no_metadata = index_no_metadata.as_query_engine(llm=llm)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "2U2NIE2Yfz8E"
},
"outputs": [],
"source": [
"res = query_engine_no_metadata.query(\"Does GQA helped LLaMA performance?\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 125
},
"id": "mxT7_IJ7f1gU",
"outputId": "1453e5c3-2637-4d33-f958-832723fd7bea"
},
"outputs": [],
"source": [
"res.response"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "GD5SQ7VEf2wR",
"outputId": "b31499f2-fdb9-41e3-ca93-ccdfced3209f"
},
"outputs": [],
"source": [
"for src in res.source_nodes:\n",
" print(\"Node ID\\t\", src.node_id)\n",
" print(\"Text\\t\", src.text)\n",
" print(\"Score\\t\", src.score)\n",
" print(\"-_\" * 20)"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "iMkpzH7vvb09"
},
"source": [
"# Evaluate\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "H8a3eKgKvckU"
},
"outputs": [],
"source": [
"from llama_index.core.evaluation import generate_question_context_pairs\n",
"\n",
"# Create questions for each segment. These questions will be used to\n",
"# assess whether the retriever can accurately identify and return the\n",
"# corresponding segment when queried.\n",
"\n",
"rag_eval_dataset = generate_question_context_pairs(\n",
" nodes, llm=llm, num_questions_per_chunk=1\n",
")\n",
"\n",
"# We can save the evaluation dataset as a json file for later use.\n",
"rag_eval_dataset.save_json(\"./rag_eval_dataset.json\")"
]
},
{
"cell_type": "markdown",
"metadata": {
"id": "eNP3cmiOe_xS"
},
"source": [
"If you have uploaded the generated question JSON file, please uncomment the code in the next cell block. This will avoid the need to generate the questions manually, saving you time and effort.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "3sA1K84U254o"
},
"outputs": [],
"source": [
"# from llama_index.finetuning.embeddings.common import (\n",
"# EmbeddingQAFinetuneDataset,\n",
"# )\n",
"# rag_eval_dataset = EmbeddingQAFinetuneDataset.from_json(\n",
"# \"./rag_eval_dataset.json\"\n",
"# )"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "H7ubvcbk27vr"
},
"outputs": [],
"source": [
"import pandas as pd\n",
"\n",
"\n",
"# A simple function to show the evaluation result.\n",
"def display_results_retriever(name, eval_results):\n",
" \"\"\"Display results from evaluate.\"\"\"\n",
"\n",
" metric_dicts = []\n",
" for eval_result in eval_results:\n",
" metric_dict = eval_result.metric_vals_dict\n",
" metric_dicts.append(metric_dict)\n",
"\n",
" full_df = pd.DataFrame(metric_dicts)\n",
"\n",
" hit_rate = full_df[\"hit_rate\"].mean()\n",
" mrr = full_df[\"mrr\"].mean()\n",
"\n",
" metric_df = pd.DataFrame(\n",
" {\"Retriever Name\": [name], \"Hit Rate\": [hit_rate], \"MRR\": [mrr]}\n",
" )\n",
"\n",
" return metric_df"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "uNLxDxoc2-Ac",
"outputId": "4084d5d0-21b6-4f0e-aec3-4aab1c8c8c44"
},
"outputs": [],
"source": [
"from llama_index.core.evaluation import RetrieverEvaluator\n",
"\n",
"# We can evaluate the retievers with different top_k values.\n",
"for i in [2, 4, 6, 8, 10]:\n",
" retriever = index.as_retriever(similarity_top_k=i)\n",
" retriever_evaluator = RetrieverEvaluator.from_metric_names(\n",
" [\"mrr\", \"hit_rate\"], retriever=retriever\n",
" )\n",
" eval_results = await retriever_evaluator.aevaluate_dataset(rag_eval_dataset)\n",
" print(display_results_retriever(f\"Retriever top_{i}\", eval_results))"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/"
},
"id": "3ukkWC9R2_0J",
"outputId": "ccde96d4-e431-4f9a-f83c-63678de56a93"
},
"outputs": [],
"source": [
"from llama_index.core.evaluation import (\n",
" RelevancyEvaluator,\n",
" FaithfulnessEvaluator,\n",
" BatchEvalRunner,\n",
")\n",
"from llama_index.core import ServiceContext\n",
"from llama_index.llms.openai import OpenAI\n",
"\n",
"for i in [2, 4, 6, 8, 10]:\n",
" # Set Faithfulness and Relevancy evaluators\n",
" query_engine = index.as_query_engine(similarity_top_k=i, llm=llm)\n",
"\n",
" # While we use GPT3.5-Turbo to answer questions, we can use GPT4 to evaluate the answers.\n",
" llm_gpt4 = OpenAI(temperature=0, model=\"gpt-4o\")\n",
"\n",
" faithfulness_evaluator = FaithfulnessEvaluator(llm=llm_gpt4)\n",
" relevancy_evaluator = RelevancyEvaluator(llm=llm_gpt4)\n",
"\n",
" # Run evaluation\n",
" queries = list(rag_eval_dataset.queries.values())\n",
" batch_eval_queries = queries[:20]\n",
"\n",
" runner = BatchEvalRunner(\n",
" {\"faithfulness\": faithfulness_evaluator, \"relevancy\": relevancy_evaluator},\n",
" workers=8,\n",
" )\n",
" eval_results = await runner.aevaluate_queries(\n",
" query_engine, queries=batch_eval_queries\n",
" )\n",
" faithfulness_score = sum(\n",
" result.passing for result in eval_results[\"faithfulness\"]\n",
" ) / len(eval_results[\"faithfulness\"])\n",
" print(f\"top_{i} faithfulness_score: {faithfulness_score}\")\n",
"\n",
" relevancy_score = sum(result.passing for result in eval_results[\"relevancy\"]) / len(\n",
" eval_results[\"relevancy\"]\n",
" )\n",
" print(f\"top_{i} relevancy_score: {relevancy_score}\")\n",
" print(\"-_\" * 10)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"id": "1MB1YD1E3EKM"
},
"outputs": [],
"source": []
}
],
"metadata": {
"colab": {
"authorship_tag": "ABX9TyMPh4RbxOzA/0Wh6s+3gc9P",
"include_colab_link": true,
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.4"
},
"widgets": {
"application/vnd.jupyter.widget-state+json": {
"0258a4a4bdc24404aa005c3b4d1235ee": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"036ae37776684a46a1a1f9e3c018a87e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_de5e18d6629d4cd0abf9e5c72d07ac73",
"IPY_MODEL_29ff5f2d9c114e8bb1b7461dbae2fdb8",
"IPY_MODEL_0f79e4f5836f4ebf80af47c8e100b012"
],
"layout": "IPY_MODEL_99a5712bb6b64f68b30b9a1dbbc803fb"
}
},
"0f79e4f5836f4ebf80af47c8e100b012": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_d190edde40f04461ba066bc7f10b9d31",
"placeholder": "",
"style": "IPY_MODEL_3114d5176097487bb1313cd49867680f",
"value": " 94/94 [00:13<00:00, 8.05it/s]"
}
},
"19c0bf2b745640b3adf6478738ba02ea": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"19f8baa6c24e4c7a8888f73f3cb7e3f8": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_dcfeadeb1cc2483399e8194ec43f2eee",
"placeholder": "",
"style": "IPY_MODEL_7cec42608a51413796ec41250e0eed6d",
"value": " 14/14 [00:00<00:00, 22.42it/s]"
}
},
"24fe3fb4e04546b3a17377d3e6ff61d6": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"2634e510d3c844d88891a98661beb6a9": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"29ff5f2d9c114e8bb1b7461dbae2fdb8": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_63bf1ccee3ad4101920f74bb2410bfe6",
"max": 94,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_8f353fecd64a4e18be6fe2eb4fea3f9d",
"value": 94
}
},
"2c8aef5e8ec848c0a23c72581e5f4b1e": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"2e939db189424ab7b5f9095932f2c99f": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"3114d5176097487bb1313cd49867680f": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"626b1ba98c374987913a7a4384f19fa1": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_e4413564a300469d86c3abc567f24701",
"max": 14,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_64167ae99cd24c729435aefc1ea13519",
"value": 14
}
},
"63a3dcff335349deacf4abb9b68d76ab": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"63bf1ccee3ad4101920f74bb2410bfe6": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"64167ae99cd24c729435aefc1ea13519": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"6a4cc229f5774cb0b4d3def7eee8b56e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"6b3d2afb949f4de691ceac601bd96d0e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"6f9f666836084de7894aa2e65c8dbe07": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"7a469b6821ed458d99a1ed57e72b3d68": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_8c556c8c8ce941c6b433780fd4a6ae54",
"IPY_MODEL_626b1ba98c374987913a7a4384f19fa1",
"IPY_MODEL_a4fad4d11a8941f8b90abb3099e9a090"
],
"layout": "IPY_MODEL_c3a4b958e4814294801495226697bce2"
}
},
"7cec42608a51413796ec41250e0eed6d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"7d54abb8f3784a789fd042c2ed2dd685": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"812d5d9b04f74592b850b3eb32f88c04": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_63a3dcff335349deacf4abb9b68d76ab",
"placeholder": "",
"style": "IPY_MODEL_99eb83f4b8904e20b45573bab84aa5f4",
"value": "Generating embeddings: 100%"
}
},
"8c556c8c8ce941c6b433780fd4a6ae54": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_2e939db189424ab7b5f9095932f2c99f",
"placeholder": "",
"style": "IPY_MODEL_fd6a36e947ec451a938d266117dab12e",
"value": "Parsing nodes: 100%"
}
},
"8cc800fbe6bc4f4da5dd6b93d4a5143a": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_812d5d9b04f74592b850b3eb32f88c04",
"IPY_MODEL_ed22c91e813c4351ab1d3eb7e174796c",
"IPY_MODEL_de2088a425104f05b52b7a3236c7baa9"
],
"layout": "IPY_MODEL_6f9f666836084de7894aa2e65c8dbe07"
}
},
"8da878f475de494fac3f7acf29e4e7f0": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"8f353fecd64a4e18be6fe2eb4fea3f9d": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"931b9be975234aa79ae55aa12629f661": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"99a5712bb6b64f68b30b9a1dbbc803fb": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"99eb83f4b8904e20b45573bab84aa5f4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
},
"a1a88448b188407b8e4aa2af86fb9345": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"a4fad4d11a8941f8b90abb3099e9a090": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_2634e510d3c844d88891a98661beb6a9",
"placeholder": "",
"style": "IPY_MODEL_6b3d2afb949f4de691ceac601bd96d0e",
"value": " 14/14 [00:00<00:00, 34.02it/s]"
}
},
"aefce46940904fce9c4e439784cbc28c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "ProgressStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "ProgressStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"bar_color": null,
"description_width": ""
}
},
"b10233c49dcc4a2f89de5389309d4fb4": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HBoxModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HBoxModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HBoxView",
"box_style": "",
"children": [
"IPY_MODEL_c617a0bc420b453693bb697a235e50d7",
"IPY_MODEL_f14f74d98f824013b562c82fb251ac26",
"IPY_MODEL_19f8baa6c24e4c7a8888f73f3cb7e3f8"
],
"layout": "IPY_MODEL_19c0bf2b745640b3adf6478738ba02ea"
}
},
"c3a4b958e4814294801495226697bce2": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"c617a0bc420b453693bb697a235e50d7": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_0258a4a4bdc24404aa005c3b4d1235ee",
"placeholder": "",
"style": "IPY_MODEL_8da878f475de494fac3f7acf29e4e7f0",
"value": "Parsing nodes: 100%"
}
},
"d190edde40f04461ba066bc7f10b9d31": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"dc5b9ea6aeea42dfae978e4a8961b03a": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"dcfeadeb1cc2483399e8194ec43f2eee": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"de2088a425104f05b52b7a3236c7baa9": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_a1a88448b188407b8e4aa2af86fb9345",
"placeholder": "",
"style": "IPY_MODEL_6a4cc229f5774cb0b4d3def7eee8b56e",
"value": " 108/108 [00:04<00:00, 22.53it/s]"
}
},
"de5e18d6629d4cd0abf9e5c72d07ac73": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "HTMLModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "HTMLModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "HTMLView",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_24fe3fb4e04546b3a17377d3e6ff61d6",
"placeholder": "",
"style": "IPY_MODEL_931b9be975234aa79ae55aa12629f661",
"value": "Generating embeddings: 100%"
}
},
"e4413564a300469d86c3abc567f24701": {
"model_module": "@jupyter-widgets/base",
"model_module_version": "1.2.0",
"model_name": "LayoutModel",
"state": {
"_model_module": "@jupyter-widgets/base",
"_model_module_version": "1.2.0",
"_model_name": "LayoutModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "LayoutView",
"align_content": null,
"align_items": null,
"align_self": null,
"border": null,
"bottom": null,
"display": null,
"flex": null,
"flex_flow": null,
"grid_area": null,
"grid_auto_columns": null,
"grid_auto_flow": null,
"grid_auto_rows": null,
"grid_column": null,
"grid_gap": null,
"grid_row": null,
"grid_template_areas": null,
"grid_template_columns": null,
"grid_template_rows": null,
"height": null,
"justify_content": null,
"justify_items": null,
"left": null,
"margin": null,
"max_height": null,
"max_width": null,
"min_height": null,
"min_width": null,
"object_fit": null,
"object_position": null,
"order": null,
"overflow": null,
"overflow_x": null,
"overflow_y": null,
"padding": null,
"right": null,
"top": null,
"visibility": null,
"width": null
}
},
"ed22c91e813c4351ab1d3eb7e174796c": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_2c8aef5e8ec848c0a23c72581e5f4b1e",
"max": 108,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_7d54abb8f3784a789fd042c2ed2dd685",
"value": 108
}
},
"f14f74d98f824013b562c82fb251ac26": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "FloatProgressModel",
"state": {
"_dom_classes": [],
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "FloatProgressModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/controls",
"_view_module_version": "1.5.0",
"_view_name": "ProgressView",
"bar_style": "success",
"description": "",
"description_tooltip": null,
"layout": "IPY_MODEL_dc5b9ea6aeea42dfae978e4a8961b03a",
"max": 14,
"min": 0,
"orientation": "horizontal",
"style": "IPY_MODEL_aefce46940904fce9c4e439784cbc28c",
"value": 14
}
},
"fd6a36e947ec451a938d266117dab12e": {
"model_module": "@jupyter-widgets/controls",
"model_module_version": "1.5.0",
"model_name": "DescriptionStyleModel",
"state": {
"_model_module": "@jupyter-widgets/controls",
"_model_module_version": "1.5.0",
"_model_name": "DescriptionStyleModel",
"_view_count": null,
"_view_module": "@jupyter-widgets/base",
"_view_module_version": "1.2.0",
"_view_name": "StyleView",
"description_width": ""
}
}
}
}
},
"nbformat": 4,
"nbformat_minor": 0
}