{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "provenance": [], "authorship_tag": "ABX9TyNPhIDuwnBNGZxkxkMnLtTw", "include_colab_link": true }, "kernelspec": { "name": "python3", "display_name": "Python 3" }, "language_info": { "name": "python" }, "widgets": { "application/vnd.jupyter.widget-state+json": { "4bb1e341a77d41c9aca0e6680911fb43": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_1d1faa15f5564b68b948eaffa58626b3", "IPY_MODEL_df22a67ae80b4673b708eea74646be61", "IPY_MODEL_3657dc19b6ac477b9f05bb6519271473" ], "layout": "IPY_MODEL_9045e402f0344428acc085d63df7ff03" } }, "1d1faa15f5564b68b948eaffa58626b3": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f57a9ac0d924408fbaaac795c172862e", "placeholder": "​", "style": "IPY_MODEL_4cb8ba074b254e91b8877cc87ae0d279", "value": "Parsing nodes: 100%" } }, "df22a67ae80b4673b708eea74646be61": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_cbd3e1411b2c4eeb943243c9d45245c4", "max": 14, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_04af736f84044e37aa6599aa708a77bc", "value": 14 } }, "3657dc19b6ac477b9f05bb6519271473": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_8d35ab8c65ba47e1be446b98f0942ac4", "placeholder": "​", "style": "IPY_MODEL_75e40756175f463e874630f229ef4066", "value": " 14/14 [00:01<00:00, 10.94it/s]" } }, "9045e402f0344428acc085d63df7ff03": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f57a9ac0d924408fbaaac795c172862e": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "4cb8ba074b254e91b8877cc87ae0d279": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "cbd3e1411b2c4eeb943243c9d45245c4": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "04af736f84044e37aa6599aa708a77bc": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "8d35ab8c65ba47e1be446b98f0942ac4": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "75e40756175f463e874630f229ef4066": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "a0dd5f2c99b2407f9f5705587976ae76": { "model_module": "@jupyter-widgets/controls", "model_name": "HBoxModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HBoxModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HBoxView", "box_style": "", "children": [ "IPY_MODEL_8728ca516bd0474586b19e0c9b457499", "IPY_MODEL_aac433a9a64c48dfb18d7a01f64d3b27", "IPY_MODEL_4802a63f700e48fca16b5d89fbab333d" ], "layout": "IPY_MODEL_3f55aef52aee4e77864d53e3197c3cc3" } }, "8728ca516bd0474586b19e0c9b457499": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_f41df4b6ab4c4132b0d20232002f0294", "placeholder": "​", "style": "IPY_MODEL_3a621edd23354ea5924189885c97dee4", "value": "Generating embeddings: 100%" } }, "aac433a9a64c48dfb18d7a01f64d3b27": { "model_module": "@jupyter-widgets/controls", "model_name": "FloatProgressModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "FloatProgressModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "ProgressView", "bar_style": "success", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_73d34cae940e4748a7b3127351925e65", "max": 108, "min": 0, "orientation": "horizontal", "style": "IPY_MODEL_2dc4a6c935ac4ef38ed9030608bd4b2f", "value": 108 } }, "4802a63f700e48fca16b5d89fbab333d": { "model_module": "@jupyter-widgets/controls", "model_name": "HTMLModel", "model_module_version": "1.5.0", "state": { "_dom_classes": [], "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "HTMLModel", "_view_count": null, "_view_module": "@jupyter-widgets/controls", "_view_module_version": "1.5.0", "_view_name": "HTMLView", "description": "", "description_tooltip": null, "layout": "IPY_MODEL_4fcebf4a9ef54729889cc6ad4cbe5d10", "placeholder": "​", "style": "IPY_MODEL_195aa202b03a42a3a674e9da2f13d878", "value": " 108/108 [00:07<00:00, 10.36it/s]" } }, "3f55aef52aee4e77864d53e3197c3cc3": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "f41df4b6ab4c4132b0d20232002f0294": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "3a621edd23354ea5924189885c97dee4": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } }, "73d34cae940e4748a7b3127351925e65": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "2dc4a6c935ac4ef38ed9030608bd4b2f": { "model_module": "@jupyter-widgets/controls", "model_name": "ProgressStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "ProgressStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "bar_color": null, "description_width": "" } }, "4fcebf4a9ef54729889cc6ad4cbe5d10": { "model_module": "@jupyter-widgets/base", "model_name": "LayoutModel", "model_module_version": "1.2.0", "state": { "_model_module": "@jupyter-widgets/base", "_model_module_version": "1.2.0", "_model_name": "LayoutModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "LayoutView", "align_content": null, "align_items": null, "align_self": null, "border": null, "bottom": null, "display": null, "flex": null, "flex_flow": null, "grid_area": null, "grid_auto_columns": null, "grid_auto_flow": null, "grid_auto_rows": null, "grid_column": null, "grid_gap": null, "grid_row": null, "grid_template_areas": null, "grid_template_columns": null, "grid_template_rows": null, "height": null, "justify_content": null, "justify_items": null, "left": null, "margin": null, "max_height": null, "max_width": null, "min_height": null, "min_width": null, "object_fit": null, "object_position": null, "order": null, "overflow": null, "overflow_x": null, "overflow_y": null, "padding": null, "right": null, "top": null, "visibility": null, "width": null } }, "195aa202b03a42a3a674e9da2f13d878": { "model_module": "@jupyter-widgets/controls", "model_name": "DescriptionStyleModel", "model_module_version": "1.5.0", "state": { "_model_module": "@jupyter-widgets/controls", "_model_module_version": "1.5.0", "_model_name": "DescriptionStyleModel", "_view_count": null, "_view_module": "@jupyter-widgets/base", "_view_module_version": "1.2.0", "_view_name": "StyleView", "description_width": "" } } } } }, "cells": [ { "cell_type": "markdown", "metadata": { "id": "view-in-github", "colab_type": "text" }, "source": [ "\"Open" ] }, { "cell_type": "markdown", "source": [ "# Install Packages and Setup Variables" ], "metadata": { "id": "-zE1h0uQV7uT" } }, { "cell_type": "code", "execution_count": null, "metadata": { "id": "QPJzr-I9XQ7l", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "440f5d93-1cac-4a70-e244-5e8af314464e" }, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m15.7/15.7 MB\u001b[0m \u001b[31m38.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m225.4/225.4 kB\u001b[0m \u001b[31m12.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.0/2.0 MB\u001b[0m \u001b[31m46.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m508.6/508.6 kB\u001b[0m \u001b[31m29.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m79.9/79.9 MB\u001b[0m \u001b[31m8.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m45.7/45.7 kB\u001b[0m \u001b[31m3.2 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m51.7/51.7 kB\u001b[0m \u001b[31m4.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m75.9/75.9 kB\u001b[0m \u001b[31m7.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m2.4/2.4 MB\u001b[0m \u001b[31m51.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m92.1/92.1 kB\u001b[0m \u001b[31m9.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m60.7/60.7 kB\u001b[0m \u001b[31m6.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m41.1/41.1 kB\u001b[0m \u001b[31m4.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m5.4/5.4 MB\u001b[0m \u001b[31m49.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m6.8/6.8 MB\u001b[0m \u001b[31m57.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m57.9/57.9 kB\u001b[0m \u001b[31m6.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m105.6/105.6 kB\u001b[0m \u001b[31m10.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.3/67.3 kB\u001b[0m \u001b[31m5.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Installing build dependencies ... \u001b[?25l\u001b[?25hdone\n", " Getting requirements to build wheel ... \u001b[?25l\u001b[?25hdone\n", " Preparing metadata (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m698.9/698.9 kB\u001b[0m \u001b[31m42.6 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.6/1.6 MB\u001b[0m \u001b[31m42.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m67.6/67.6 kB\u001b[0m \u001b[31m7.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.1/3.1 MB\u001b[0m \u001b[31m80.4 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m71.5/71.5 kB\u001b[0m \u001b[31m7.8 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m76.9/76.9 kB\u001b[0m \u001b[31m9.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m58.3/58.3 kB\u001b[0m \u001b[31m6.3 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m46.0/46.0 kB\u001b[0m \u001b[31m4.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m50.8/50.8 kB\u001b[0m \u001b[31m4.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m341.4/341.4 kB\u001b[0m \u001b[31m31.9 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m3.4/3.4 MB\u001b[0m \u001b[31m55.0 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m1.3/1.3 MB\u001b[0m \u001b[31m63.7 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m130.2/130.2 kB\u001b[0m \u001b[31m12.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m49.4/49.4 kB\u001b[0m \u001b[31m4.5 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[2K \u001b[90m━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━\u001b[0m \u001b[32m86.8/86.8 kB\u001b[0m \u001b[31m9.1 MB/s\u001b[0m eta \u001b[36m0:00:00\u001b[0m\n", "\u001b[?25h Building wheel for pypika (pyproject.toml) ... \u001b[?25l\u001b[?25hdone\n" ] } ], "source": [ "!pip install -q llama-index==0.9.21 openai==1.6.0 tiktoken==0.5.2 chromadb==0.4.21 kaleido==0.2.1 python-multipart==0.0.6 cohere==4.39" ] }, { "cell_type": "code", "source": [ "import os\n", "\n", "# Set the \"OPENAI_API_KEY\" and \"COHERE_API_KEY\" in the Python environment.\n", "# Will be used by OpenAI client later.\n", "os.environ[\"OPENAI_API_KEY\"] = \"\"\n", "os.environ[\"COHERE_API_KEY\"] = \"\"" ], "metadata": { "id": "riuXwpSPcvWC" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "import nest_asyncio\n", "\n", "nest_asyncio.apply()" ], "metadata": { "id": "jIEeZzqLbz0J" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "# Load a Model" ], "metadata": { "id": "Bkgi2OrYzF7q" } }, { "cell_type": "code", "source": [ "from llama_index.llms import OpenAI\n", "\n", "llm = OpenAI(temperature=0.9, model=\"gpt-3.5-turbo\", max_tokens=512)" ], "metadata": { "id": "9oGT6crooSSj" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "# Create a VectoreStore" ], "metadata": { "id": "0BwVuJXlzHVL" } }, { "cell_type": "code", "source": [ "import chromadb\n", "\n", "# create client and a new collection\n", "# chromadb.EphemeralClient saves data in-memory.\n", "chroma_client = chromadb.PersistentClient(path=\"./mini-llama-articles\")\n", "chroma_collection = chroma_client.create_collection(\"mini-llama-articles\")" ], "metadata": { "id": "SQP87lHczHKc" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "from llama_index.vector_stores import ChromaVectorStore\n", "\n", "# Define a storage context object using the created vector database.\n", "vector_store = ChromaVectorStore(chroma_collection=chroma_collection)" ], "metadata": { "id": "zAaGcYMJzHAN" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "# Load the Dataset (CSV)" ], "metadata": { "id": "I9JbAzFcjkpn" } }, { "cell_type": "markdown", "source": [ "## Download" ], "metadata": { "id": "ceveDuYdWCYk" } }, { "cell_type": "markdown", "source": [ "The dataset includes several articles from the TowardsAI blog, which provide an in-depth explanation of the LLaMA2 model. Read the dataset as a long string." ], "metadata": { "id": "eZwf6pv7WFmD" } }, { "cell_type": "code", "source": [ "!wget https://raw.githubusercontent.com/AlaFalaki/tutorial_notebooks/main/data/mini-llama-articles.csv" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/" }, "id": "wl_pbPvMlv1h", "outputId": "f844a7a8-484b-4693-8715-42506778b1de" }, "execution_count": null, "outputs": [ { "output_type": "stream", "name": "stdout", "text": [ "--2024-02-06 19:06:12-- https://raw.githubusercontent.com/AlaFalaki/tutorial_notebooks/main/data/mini-llama-articles.csv\n", "Resolving raw.githubusercontent.com (raw.githubusercontent.com)... 185.199.108.133, 185.199.109.133, 185.199.111.133, ...\n", "Connecting to raw.githubusercontent.com (raw.githubusercontent.com)|185.199.108.133|:443... connected.\n", "HTTP request sent, awaiting response... 200 OK\n", "Length: 173646 (170K) [text/plain]\n", "Saving to: ‘mini-llama-articles.csv’\n", "\n", "\rmini-llama-articles 0%[ ] 0 --.-KB/s \rmini-llama-articles 100%[===================>] 169.58K --.-KB/s in 0.04s \n", "\n", "2024-02-06 19:06:12 (4.66 MB/s) - ‘mini-llama-articles.csv’ saved [173646/173646]\n", "\n" ] } ] }, { "cell_type": "markdown", "source": [ "## Read File" ], "metadata": { "id": "VWBLtDbUWJfA" } }, { "cell_type": "code", "source": [ "import csv\n", "\n", "rows = []\n", "\n", "# Load the file as a JSON\n", "with open(\"./mini-llama-articles.csv\", mode=\"r\", encoding=\"utf-8\") as file:\n", " csv_reader = csv.reader(file)\n", "\n", " for idx, row in enumerate( csv_reader ):\n", " if idx == 0: continue; # Skip header row\n", " rows.append( row )\n", "\n", "# The number of characters in the dataset.\n", "len( rows )" ], "metadata": { "id": "0Q9sxuW0g3Gd", "colab": { "base_uri": "https://localhost:8080/" }, "outputId": "473050f8-0640-4e7c-91e7-3ea3485cfb51" }, "execution_count": null, "outputs": [ { "output_type": "execute_result", "data": { "text/plain": [ "14" ] }, "metadata": {}, "execution_count": 8 } ] }, { "cell_type": "markdown", "source": [ "# Convert to Document obj" ], "metadata": { "id": "S17g2RYOjmf2" } }, { "cell_type": "code", "source": [ "from llama_index import Document\n", "\n", "# Convert the chunks to Document objects so the LlamaIndex framework can process them.\n", "documents = [Document(text=row[1], metadata={\"title\": row[0], \"url\": row[2], \"source_name\": row[3]}) for row in rows]" ], "metadata": { "id": "YizvmXPejkJE" }, "execution_count": null, "outputs": [] }, { "cell_type": "markdown", "source": [ "# Transforming" ], "metadata": { "id": "qjuLbmFuWsyl" } }, { "cell_type": "code", "source": [ "from llama_index.text_splitter import TokenTextSplitter\n", "\n", "# Define the splitter object that split the text into segments with 512 tokens,\n", "# with a 128 overlap between the segments.\n", "text_splitter = TokenTextSplitter(\n", " separator=\" \", chunk_size=512, chunk_overlap=128\n", ")" ], "metadata": { "id": "9z3t70DGWsjO" }, "execution_count": null, "outputs": [] }, { "cell_type": "code", "source": [ "from llama_index.extractors import (\n", " SummaryExtractor,\n", " QuestionsAnsweredExtractor,\n", " KeywordExtractor,\n", ")\n", "from llama_index.embeddings import OpenAIEmbedding\n", "from llama_index.ingestion import IngestionPipeline\n", "\n", "# Create the pipeline to apply the transformation on each chunk,\n", "# and store the transformed text in the chroma vector store.\n", "pipeline = IngestionPipeline(\n", " transformations=[\n", " text_splitter,\n", " QuestionsAnsweredExtractor(questions=3, llm=llm),\n", " SummaryExtractor(summaries=[\"prev\", \"self\"], llm=llm),\n", " KeywordExtractor(keywords=10, llm=llm),\n", " OpenAIEmbedding(),\n", " ],\n", " vector_store=vector_store\n", ")\n", "\n", "# Run the transformation pipeline.\n", "nodes = pipeline.run(documents=documents, show_progress=True);" ], "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 413, "referenced_widgets": [ "4bb1e341a77d41c9aca0e6680911fb43", "1d1faa15f5564b68b948eaffa58626b3", "df22a67ae80b4673b708eea74646be61", "3657dc19b6ac477b9f05bb6519271473", "9045e402f0344428acc085d63df7ff03", "f57a9ac0d924408fbaaac795c172862e", "4cb8ba074b254e91b8877cc87ae0d279", "cbd3e1411b2c4eeb943243c9d45245c4", "04af736f84044e37aa6599aa708a77bc", "8d35ab8c65ba47e1be446b98f0942ac4", "75e40756175f463e874630f229ef4066", "a0dd5f2c99b2407f9f5705587976ae76", "8728ca516bd0474586b19e0c9b457499", "aac433a9a64c48dfb18d7a01f64d3b27", "4802a63f700e48fca16b5d89fbab333d", "3f55aef52aee4e77864d53e3197c3cc3", "f41df4b6ab4c4132b0d20232002f0294", "3a621edd23354ea5924189885c97dee4", "73d34cae940e4748a7b3127351925e65", "2dc4a6c935ac4ef38ed9030608bd4b2f", "4fcebf4a9ef54729889cc6ad4cbe5d10", "195aa202b03a42a3a674e9da2f13d878" ] }, "id": "P9LDJ7o-Wsc-", "outputId": "72b67575-2d55-4145-90be-a367f128fa44" }, "execution_count": null, "outputs": [ { "output_type": "display_data", "data": { "text/plain": [ "Parsing nodes: 0%| | 0/14 [00:00