import spaces import tempfile import gradio as gr import numpy as np import torch from PIL import Image import trimesh from huggingface_hub import hf_hub_download from depth_anything_v2.dpt import DepthAnythingV2 css = """ #img-display-container { max-height: 100vh; } #img-display-input { max-height: 80vh; } #img-display-output { max-height: 80vh; } #download { height: 62px; } """ DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu' model_configs = { 'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]}, 'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]}, 'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]}, 'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]} } encoder2name = { 'vits': 'Small', 'vitb': 'Base', 'vitl': 'Large', 'vitg': 'Giant', # we are undergoing company review procedures to release our giant model checkpoint } encoder = 'vitl' model_name = encoder2name[encoder] model = DepthAnythingV2(**model_configs[encoder]) filepath = hf_hub_download(repo_id=f"depth-anything/Depth-Anything-V2-{model_name}", filename=f"depth_anything_v2_{encoder}.pth", repo_type="model") state_dict = torch.load(filepath, map_location="cpu") model.load_state_dict(state_dict) model = model.to(DEVICE).eval() title = "# Depth-Anything-V2-DepthPop" description = """ このツールを使用すると、写真やイラストを飛び出す絵本風にすることができます。 """ @spaces.GPU def predict_depth(image): return model.infer_image(image) def generate_point_cloud(color_img, resolution): depth_img = predict_depth(color_img[:, :, ::-1]) # 画像サイズの調整 height, width = color_img.shape[:2] new_height = resolution new_width = int(width * (new_height / height)) color_img_resized = np.array(Image.fromarray(color_img).resize((new_width, new_height), Image.LANCZOS)) depth_img_resized = np.array(Image.fromarray(depth_img).resize((new_width, new_height), Image.LANCZOS)) # 深度の調整 depth_min = np.min(depth_img_resized) depth_max = np.max(depth_img_resized) normalized_depth = (depth_img_resized - depth_min) / (depth_max - depth_min) # 非線形変換(必要に応じて調整) adjusted_depth = np.power(normalized_depth, 0.1) # ガンマ補正 # カメラの内部パラメータ(使用するカメラに基づいて調整) fx, fy = 300, 300 # 焦点距離 cx, cy = color_img_resized.shape[1] / 2, color_img_resized.shape[0] / 2 # 主点 # メッシュグリッドの作成 rows, cols = adjusted_depth.shape u, v = np.meshgrid(range(cols), range(rows)) # 3D座標の計算(X座標を反転) Z = adjusted_depth X = -((u - cx) * Z / fx) # X座標を反転 Y = (v - cy) * Z / fy # X, Y, Z座標をスタック points = np.stack((X, Y, Z), axis=-1) # 点のリストに整形 points = points.reshape(-1, 3) # 各点の色を取得 colors = color_img_resized.reshape(-1, 3) # 色を0-1の範囲に正規化 colors = colors.astype(np.float32) / 255.0 # PointCloudオブジェクトの作成 cloud = trimesh.PointCloud(vertices=points, colors=colors) # Z軸周りに180度回転を適用(時計回り) rotation = trimesh.transformations.rotation_matrix(np.pi, [0, 0, 1]) cloud.apply_transform(rotation) # Y軸周りに180度回転を適用(上下を反転) flip_y = trimesh.transformations.rotation_matrix(np.pi, [0, 1, 0]) cloud.apply_transform(flip_y) # GLB形式で保存 output_path = tempfile.mktemp(suffix='.glb') cloud.export(output_path) return output_path with gr.Blocks(css=css) as demo: gr.Markdown(title) gr.Markdown(description) gr.Markdown("### Depth Prediction & Point Cloud Generation") with gr.Row(): input_image = gr.Image(label="Input Image", type='numpy', elem_id='img-display-input') with gr.Row(): resolution_slider = gr.Slider(minimum=512, maximum=1600, value=512, step=1, label="Resolution") submit = gr.Button(value="Generate") output_3d = gr.Model3D( clear_color=[0.0, 0.0, 0.0, 0.0], label="3D Model", ) submit.click(fn=generate_point_cloud, inputs=[input_image, resolution_slider], outputs=[output_3d]) if __name__ == '__main__': demo.queue().launch(share=True)